Dr. James R. D. Montgomery, Emma L. Gates, Dr. Marshall J. Smith, Dr. Daniel A. Taylor, Dr. Jonathan P. Bradley, Dr. Daniel B. G. Berry, Dr. Peter Kiraly, Prof. Mathias Nilsson, Prof. Gareth A. Morris, Dr. Ralph W. Adams, Dr. Laura Castañar
{"title":"Ultraselective, Ultrahigh Resolution 1D TOCSY","authors":"Dr. James R. D. Montgomery, Emma L. Gates, Dr. Marshall J. Smith, Dr. Daniel A. Taylor, Dr. Jonathan P. Bradley, Dr. Daniel B. G. Berry, Dr. Peter Kiraly, Prof. Mathias Nilsson, Prof. Gareth A. Morris, Dr. Ralph W. Adams, Dr. Laura Castañar","doi":"10.1002/cmtd.202400013","DOIUrl":"https://doi.org/10.1002/cmtd.202400013","url":null,"abstract":"<p>Solution state <sup>1</sup>H NMR spectroscopy provides valuable insights into molecular structure and conformation. However, when the spectrum exhibits severe signal overlap, it hampers the extraction of key structural information. Here, an ultraselective, ultrahigh resolution TOCSY method is introduced that greatly reduces spectral complexity, allowing the extraction of previously inaccessible spectral information. It combines the recently developed GEMSTONE excitation with homonuclear decoupling to provide highly simplified through-bond correlation 1D <sup>1</sup>H NMR spectra, showing all signals within the selected spin system as singlets. The new method can greatly facilitate the analysis of mixtures, as shown here for a mixture of <i>Cinchona</i> alkaloids (popular catalysts in asymmetric synthesis) and a mixture of glucocorticoids (used for treating conditions such as asthma).</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 9","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zirong Huang, Prof. Sheng Chen, Prof. Xuechen Li, Dr. Han Liu
{"title":"Conjugation Methods in Synthetic Glycoconjugate Vaccines","authors":"Zirong Huang, Prof. Sheng Chen, Prof. Xuechen Li, Dr. Han Liu","doi":"10.1002/cmtd.202300054","DOIUrl":"10.1002/cmtd.202300054","url":null,"abstract":"<p>In the past two to three decades, synthetic glycoconjugate vaccines have shown great potential in the prevention of severe infections and protection of high-risk populations. Conjugation of synthetic oligosaccharide haptens to carrier proteins is the key step for the vaccine preparation. In this review, the conjugation methods currently used in the synthesis of glycoconjugate vaccines from synthetic/homogeneous oligosaccharide haptens are summarized with the focus on the reaction conditions (pH and sugar/protein ratio) and performance. This information can help researchers choose the appropriate conjugation methods. Further research directions toward site-specific conjugations and fully homogeneous glycoconjugate vaccines are also discussed.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 7-8","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christine Kern, Astrid Scherer, Laura Gambs, Dr. Mariia Yuneva, Prof. Dr. Henning Walczak, Dr. Gianmaria Liccardi, Julia Saggau, Dr. Peter Kreuzaler, Prof. Dr. Marcus Rohnke
{"title":"Orbi-SIMS Mediated Metabolomics Analysis of Pathogenic Tissue up to Cellular Resolution","authors":"Christine Kern, Astrid Scherer, Laura Gambs, Dr. Mariia Yuneva, Prof. Dr. Henning Walczak, Dr. Gianmaria Liccardi, Julia Saggau, Dr. Peter Kreuzaler, Prof. Dr. Marcus Rohnke","doi":"10.1002/cmtd.202400008","DOIUrl":"10.1002/cmtd.202400008","url":null,"abstract":"<p>Tumors have a complex metabolism that differs from most metabolic processes in healthy tissues. It is highly dynamic and driven by the tumor cells themselves, as well as by the non-transformed stromal infiltrates and immune components. Each of these cell populations has a distinct metabolism that depends on both their cellular state and the availability of nutrients. Consequently, to fully understand the individual metabolic states of all tumor-forming cells, correlative mass spectrometric imaging (MSI) up to cellular resolution with minimal metabolite shift needs to be achieved. By using a secondary ion mass spectrometer (SIMS) equipped with an Orbitrap mass analyzer, we present a workflow to image primary murine tumor tissues up to cellular resolution and correlate these ion images with post acquisition immunofluorescence or histological staining. In a murine breast cancer model, we could identify metabolic profiles that clearly distinguish tumor tissue from stromal cells and immune infiltrates. We demonstrate the robustness of the classification by applying the same profiles to an independent murine model of lung cancer, which is accurately segmented by histological traits. Our pipeline allows metabolic segmentation with simultaneous cell identification, which in the future will enable the design of subpopulation-targeted metabolic interventions for therapeutic purposes.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 7-8","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding Voltammograms at the Molecular Frontier: Integration of Voltammetry and Mass Spectrometry","authors":"Adarsh Koovakattil Surendran, Jana Roithová","doi":"10.1002/cmtd.202400003","DOIUrl":"10.1002/cmtd.202400003","url":null,"abstract":"<p>Electrochemical reactions are better understood by gaining insight into the molecular transformations at the electrodes. This paper introduces a straightforward experimental arrangement in which the voltammetry experiment in a standard electrochemical cell integrates with online electrospray-ionization mass-spectrometry. The procedure allows for monitoring of the ions produced at the working electrode. The ionic species sampling is facilitated by a silica capillary embedded in the working electrode and connected directly to the electrospray ionization source. This integration configures real-time monitoring of the ions produced at the working electrode, enhancing our knowledge of the electrochemical process. The methodology is thoroughly described and exemplified by monitoring the reactive intermediates and products that arise during the electrochemical oxidation of carbazole. This design provides an opportunity to study intermediates in electrochemical reactions with advanced mass spectrometry methods such as ion mobility separation or ion spectroscopy.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Conventional Methodologies for the Synthesis of N-Nitrosamines","authors":"Rojan Ali, Campbell S. Wolfe, Prof. Thomas Wirth","doi":"10.1002/cmtd.202300053","DOIUrl":"10.1002/cmtd.202300053","url":null,"abstract":"<p><i>N</i>-Nitrosamines acting as contaminants in our environment is a topic of increasing concern. Detection methods are required, necessitating analytical standards. Herein, we discuss some conventional methodologies to prepare <i>N</i>-nitrosamines and compare them with unconventional pathways towards their synthesis. These methods are often more environmentally benign and safer.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140266892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Karla A. Erickson, Dr. Stephen S. Parker, Dr. Marisa J. Monreal
{"title":"Thermal Elimination of Pyridine from a Uranium Trichloride Precursor","authors":"Dr. Karla A. Erickson, Dr. Stephen S. Parker, Dr. Marisa J. Monreal","doi":"10.1002/cmtd.202300052","DOIUrl":"10.1002/cmtd.202300052","url":null,"abstract":"<p>Renewed interest in advanced nuclear reactors, such as Molten Salt Reactors (MSRs), has spurred studies in actinide halide chemistry and property measurements. Several proposed research-scale and commercial MSR designs incorporate uranium trichloride (UCl<sub>3</sub>) fuel. There are relatively few preparations for isolated actinide halides reported in the literature, therefore novel methods for the isolation of pure material are desired. This communication describes the thermal elimination of pyridine (py) from the coordination complex UCl<sub>3</sub>py<sub>2</sub> to yield gram-scale quantities of UCl<sub>3</sub>. The purity of the UCl<sub>3</sub> product was determined through powder X-ray Diffractometry (pXRD) and Elemental Analysis (EA).</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}