BMC genomic dataPub Date : 2024-06-12DOI: 10.1186/s12863-024-01234-w
Aisha Fong, Christina M Rochus, Umesh K Shandilya, Maria M M Muniz, Ankita Sharma, Flavio S Schenkel, Niel A Karrow, Christine F Baes
{"title":"The role of interleukin-10 receptor alpha (IL10Rα) in Mycobacterium avium subsp. paratuberculosis infection of a mammary epithelial cell line.","authors":"Aisha Fong, Christina M Rochus, Umesh K Shandilya, Maria M M Muniz, Ankita Sharma, Flavio S Schenkel, Niel A Karrow, Christine F Baes","doi":"10.1186/s12863-024-01234-w","DOIUrl":"10.1186/s12863-024-01234-w","url":null,"abstract":"<p><strong>Background: </strong>Johne's disease is a chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease is highly contagious and MAP infection in dairy cattle can eventually lead to death. With no available treatment for Johne's disease, genetic selection and improvements in management practices could help reduce its prevalence. In a previous study, the gene coding interleukin-10 receptor subunit alpha (IL10Rα) was associated with Johne's disease in dairy cattle. Our objective was to determine how IL10Rα affects the pathogenesis of MAP by examining the effect of a live MAP challenge on a mammary epithelial cell line (MAC-T) that had IL10Rα knocked out using CRISPR/cas9. The wild type and the IL10Rα knockout MAC-T cell lines were exposed to live MAP bacteria for 72 h. Thereafter, mRNA was extracted from infected and uninfected cells. Differentially expressed genes were compared between the wild type and the IL10Rα knockout cell lines. Gene ontology was performed based on the differentially expressed genes to determine which biological pathways were involved.</p><p><strong>Results: </strong>Immune system processes pathways were targeted to determine the effect of IL10Rα on the response to MAP infection. There was a difference in immune response between the wild type and IL10Rα knockout MAC-T cell lines, and less difference in immune response between infected and not infected IL10Rα knockout MAC-T cells, indicating IL10Rα plays an important role in the progression of MAP infection. Additionally, these comparisons allowed us to identify other genes involved in inflammation-mediated chemokine and cytokine signalling, interleukin signalling and toll-like receptor pathways.</p><p><strong>Conclusions: </strong>Identifying differentially expressed genes in wild type and ILR10α knockout MAC-T cells infected with live MAP bacteria provided further evidence that IL10Rα contributes to mounting an immune response to MAP infection and allowed us to identify additional potential candidate genes involved in this process. We found there was a complex immune response during MAP infection that is controlled by many genes.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"58"},"PeriodicalIF":1.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC genomic dataPub Date : 2024-06-10DOI: 10.1186/s12863-024-01232-y
Buyu Li, Ke Huang, Xiaoli Chen, Chun Qin, Xuemei Zhang
{"title":"Comparative and phylogenetic analysis of chloroplast genomes from four species in Quercus section Cyclobalanopsis.","authors":"Buyu Li, Ke Huang, Xiaoli Chen, Chun Qin, Xuemei Zhang","doi":"10.1186/s12863-024-01232-y","DOIUrl":"10.1186/s12863-024-01232-y","url":null,"abstract":"<p><p>The Quercus L. species is widely recognized as a significant group in the broad-leaved evergreen forests of tropical and subtropical East Asia. These plants hold immense economic value for their use as firewood, furniture, and street trees. However, the identification of Quercus species is considered challenging, and the relationships between these species remain unclear. In this study, we sequenced and assembled the chloroplast (cp.) genomes of four Quercus section Cyclobalanopsis species (Quercus disciformis, Quercus dinghuensis, Quercus blackei, and Quercus hui). Additionally, we retrieved six published cp. genome sequences of Cyclobalanopsis species (Quercus fleuryi, Quercus pachyloma, Quercus ningangensis, Quercus litseoides, Quercus gilva, and Quercus myrsinifolia). Our aim was to perform comparative genomics and phylogenetic analyses of the cp. whole genome sequences of ten Quercus section Cyclobalanopsis species. The results revealed that: (1) Quercus species exhibit a typical tetrad structure, with the cp. genome lengths of the newly sequenced species (Q. disciformis, Q. dinghuensis, Q. blakei, and Q. hui) being 160,805 bp, 160,801 bp, 160,787 bp, and 160,806 bp, respectively; (2) 469 SSRs were detected, among which A/T base repeats were the most common; (3) no rearrangements or inversions were detected within the chloroplast genomes. Genes with high nucleotide polymorphism, such as rps14-psaB, ndhJ-ndhK, rbcL-accD, and rps19-rpl2_2, provided potential reference loci for molecular identification within the Cyclobalanopsis section; (4) phylogenetic analysis showed that the four sections of Cyclobalanopsis were grouped into sister taxa, with Q. hui being the first to diverge from the evolutionary branch and Q. disciformis being the most closely related to Q. blackei. The results of this study form the basis for future studies on taxonomy and phylogenetics.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"57"},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC genomic dataPub Date : 2024-06-10DOI: 10.1186/s12863-024-01233-x
Ola Abuzaid, Abeer Babiker Idris, Semih Yılmaz, Einass Babikir Idris, Leena Babiker Idris, Mohamed A Hassan
{"title":"Prediction of the most deleterious non-synonymous SNPs in the human IL1B gene: evidence from bioinformatics analyses.","authors":"Ola Abuzaid, Abeer Babiker Idris, Semih Yılmaz, Einass Babikir Idris, Leena Babiker Idris, Mohamed A Hassan","doi":"10.1186/s12863-024-01233-x","DOIUrl":"10.1186/s12863-024-01233-x","url":null,"abstract":"<p><strong>Background: </strong>Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein.</p><p><strong>Results: </strong>Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds.</p><p><strong>Conclusions: </strong>This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"56"},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC genomic dataPub Date : 2024-06-08DOI: 10.1186/s12863-024-01237-7
Johan Zicola, Prasad Dasari, Katharina Klara Hahn, Katharina Ziese-Kubon, Armin Meurer, Timo Buhl, Stefan Scholten
{"title":"De novo transcriptome assembly of the oak processionary moth Thaumetopoea processionea.","authors":"Johan Zicola, Prasad Dasari, Katharina Klara Hahn, Katharina Ziese-Kubon, Armin Meurer, Timo Buhl, Stefan Scholten","doi":"10.1186/s12863-024-01237-7","DOIUrl":"10.1186/s12863-024-01237-7","url":null,"abstract":"<p><strong>Objectives: </strong>The oak processionary moth (OPM) (Thaumetopoea processionea) is a species of moth (order: Lepidoptera) native to parts of central Europe. However, in recent years, it has become an invasive species in various countries, particularly in the United Kingdom and the Netherlands. The larvae of the OPM are covered with urticating barbed hairs (setae) causing irritating and allergic reactions at the three last larval stages (L3-L5). The aim of our study was to generate a de novo transcriptomic assembly for OPM larvae by including one non-allergenic stage (L2) and two allergenic stages (L4 and L5). A transcriptomic assembly will help identify potential allergenic peptides produced by OPM larvae, providing valuable information for developing novel therapeutic strategies and allergic immunodiagnostic assays.</p><p><strong>Data: </strong>Transcriptomes of three larval stages of the OPM were de novo assembled and annotated using Trinity and Trinotate, respectively. A total of 145,251 transcripts from 99,868 genes were identified. Bench-marking universal single-copy orthologues analysis indicated high completeness of the assembly. About 19,600 genes are differentially expressed between the non-allergenic and allergenic larval stages. The data provided here contribute to the characterization of OPM, which is both an invasive species and a health hazard.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"55"},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptome analysis revealed differences in gene expression in sheep muscle tissue at different developmental stages.","authors":"Sailuo Wan, Mengyu Lou, Sihuan Zhang, Shuang Li, Yinghui Ling","doi":"10.1186/s12863-024-01235-9","DOIUrl":"10.1186/s12863-024-01235-9","url":null,"abstract":"<p><strong>Background: </strong>The analysis of differentially expressed genes in muscle tissues of sheep at different ages is helpful to analyze the gene expression trends during muscle development. In this study, the longissimus dorsi muscle of pure breeding Hu sheep (H), Suffolk sheep and Hu sheep hybrid F1 generation (SH) and East Friesian and Hu sheep hybrid sheep (EHH) three strains of sheep born 2 days (B2) and 8 months (M8) was used as the research object, and transcriptome sequencing technology was used to identify the differentially expressed genes of sheep longissimus dorsi muscle in these two stages. Subsequently, GO and KEGG enrichment analysis were performed on the differential genes. Nine differentially expressed genes were randomly selected and their expression levels were verified by qRT-PCR.</p><p><strong>Results: </strong>The results showed that 842, 1301 and 1137 differentially expressed genes were identified in H group, SH group and EHH group, respectively. Among them, 191 differential genes were enriched in these three strains, including pre-folding protein subunit 6 (PFDN6), DnaJ heat shock protein family member A4 (DNAJA4), myosin heavy chain 8 (MYH8) and so on. GO and KEGG enrichment analysis was performed on 191 differentially expressed genes shared by the three strains to determine common biological pathways. The results showed that the differentially expressed genes were significantly enriched in ribosomes, unfolded protein binding, FoxO signaling pathway, glycolysis / glycogen generation and glutathione signaling pathway that regulate muscle protein synthesis and energy metabolism. The results of qRT-PCR were consistent with transcriptome sequencing, which proved that the sequencing results were reliable.</p><p><strong>Conclusions: </strong>Overall, this study revealed the important genes and signaling pathways related to sheep skeletal muscle development, and the result laid a foundation for further understanding the mechanism of sheep skeletal muscle development.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"54"},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome sequencing of captive white tigers from Bangladesh.","authors":"Ashutosh Das, Md Shahadat Hossain Suvo, Mishuk Shaha, Mukta Das Gupta","doi":"10.1186/s12863-024-01239-5","DOIUrl":"10.1186/s12863-024-01239-5","url":null,"abstract":"<p><strong>Objectives: </strong>The Bengal tiger Panthera tigris tigris, is an emblematic animal for Bangladesh. Despite being the apex predator in the wild, their number is decreasing due to anthropogenic activities such as hunting, urbanization, expansion of agriculture and deforestation. By contrast, captive tigers are flourishing due to practical conservation efforts. Breeding within the small captive population can produce inbreeding depression and genetic bottlenecks, which may limit the success of conservation efforts. Despite past decades of research, a comprehensive database on genetic variation in the captive and wild Bengal tigers in Bangladesh still needs to be included. Therefore, this research aimed to investigate the White Bengal tiger genome to create a resource for future studies to understand variation underlying important functional traits.</p><p><strong>Data description: </strong>Blood samples from Chattogram Zoo were collected for three white Bengal tigers. Genomic DNA for all collected samples were extracted using a commercial DNA extraction kit. Whole genome sequencing was performed using a DNBseq platform. We generated 77 Gb of whole-genome sequencing (WGS) data for three white Bengal tigers (Average 11X coverage/sample). The data we generated will establish a paradigm for tiger research in Bangladesh by providing a genomic resource for future functional studies on the Bengal white tiger.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"52"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC genomic dataPub Date : 2024-06-06DOI: 10.1186/s12863-024-01240-y
Robert W Meredith, Yoamel Milián-García, John Gatesy, Michael A Russello, George Amato
{"title":"Draft assembly and annotation of the Cuban crocodile (Crocodylus rhombifer) genome.","authors":"Robert W Meredith, Yoamel Milián-García, John Gatesy, Michael A Russello, George Amato","doi":"10.1186/s12863-024-01240-y","DOIUrl":"10.1186/s12863-024-01240-y","url":null,"abstract":"<p><strong>Objectives: </strong>The new data provide an important genomic resource for the Critically Endangered Cuban crocodile (Crocodylus rhombifer). Cuban crocodiles are restricted to the Zapata Swamp in southern Matanzas Province, Cuba, and readily hybridize with the widespread American crocodile (Crocodylus acutus) in areas of sympatry. The reported de novo assembly will contribute to studies of crocodylian evolutionary history and provide a resource for informing Cuban crocodile conservation.</p><p><strong>Data description: </strong>The final 2.2 Gb draft genome for C. rhombifer consists of 41,387 scaffolds (contigs: N50 = 104.67 Kb; scaffold: N50-518.55 Kb). Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 92.3% of the 3,354 genes in the vertebrata_odb10 database. Approximately 42% of the genome (960Mbp) comprises repeat elements. We predicted 30,138 unique protein-coding sequences (17,737 unique genes) in the genome assembly. Functional annotation found the top Gene Ontology annotations for Biological Processes, Molecular Function, and Cellular Component were regulation, protein, and intracellular, respectively. This assembly will support future macroevolutionary, conservation, and molecular studies of the Cuban crocodile.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"53"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC genomic dataPub Date : 2024-06-06DOI: 10.1186/s12863-024-01238-6
Chun Hing She, Hing Wai Tsang, Xingtian Yang, Sabrina Sl Tsao, Clara Sm Tang, Sophelia Hs Chan, Mike Yw Kwan, Gilbert T Chua, Wanling Yang, Patrick Ip
{"title":"Genome-wide association study of BNT162b2 vaccine-related myocarditis identifies potential predisposing functional areas in Hong Kong adolescents.","authors":"Chun Hing She, Hing Wai Tsang, Xingtian Yang, Sabrina Sl Tsao, Clara Sm Tang, Sophelia Hs Chan, Mike Yw Kwan, Gilbert T Chua, Wanling Yang, Patrick Ip","doi":"10.1186/s12863-024-01238-6","DOIUrl":"10.1186/s12863-024-01238-6","url":null,"abstract":"<p><p>Vaccine-related myocarditis associated with the BNT162b2 vaccine is a rare complication, with a higher risk observed in male adolescents. However, the contribution of genetic factors to this condition remains uncertain. In this study, we conducted a comprehensive genetic association analysis in a cohort of 43 Hong Kong Chinese adolescents who were diagnosed with myocarditis shortly after receiving the BNT162b2 mRNA COVID-19 vaccine. A comparison of whole-genome sequencing data was performed between the confirmed myocarditis cases and a control group of 481 healthy individuals. To narrow down potential genomic regions of interest, we employed a novel clustering approach called ClusterAnalyzer, which prioritised 2,182 genomic regions overlapping with 1,499 genes for further investigation. Our pathway analysis revealed significant enrichment of these genes in functions related to cardiac conduction, ion channel activity, plasma membrane adhesion, and axonogenesis. These findings suggest a potential genetic predisposition in these specific functional areas that may contribute to the observed side effect of the vaccine. Nevertheless, further validation through larger-scale studies is imperative to confirm these findings. Given the increasing prominence of mRNA vaccines as a promising strategy for disease prevention and treatment, understanding the genetic factors associated with vaccine-related myocarditis assumes paramount importance. Our study provides valuable insights that significantly advance our understanding in this regard and serve as a valuable foundation for future research endeavours in this field.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"51"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantifying variations associated with dental caries reveals disparity in effect allele frequencies across diverse populations.","authors":"Sangram Sandhu, Varun Sharma, Sachin Kumar, Niraj Rai, Pooran Chand","doi":"10.1186/s12863-024-01215-z","DOIUrl":"10.1186/s12863-024-01215-z","url":null,"abstract":"<p><strong>Background: </strong>Dental caries (DC) is a multifaceted oral condition influenced by genetic and environmental factors. Recent advancements in genotyping and sequencing technologies, such as Genome-Wide Association Studies (GWAS) have helped researchers to identify numerous genetic variants associated with DC, but their prevalence and significance across diverse global populations remain poorly understood as most of the studies were conducted in European populations, and very few were conducted in Asians specifically in Indians.</p><p><strong>Aim: </strong>This study aimed to evaluate the genetic affinity of effect alleles associated with DC to understand the genetic relationship between global populations with respect to the Indian context.</p><p><strong>Methodology: </strong>This present study used an empirical approach in which variants associated with DC susceptibility were selected. These variants were identified and annotated using the GWAS summary. The genetic affinity was evaluated using Fst.</p><p><strong>Results: </strong>The effect of allele frequencies among different populations was examined, revealing variations in allele distribution. African populations exhibited higher frequencies of specific risk alleles, whereas East Asian and European populations displayed distinct profiles. South Asian populations showed a unique genetic cluster.</p><p><strong>Conclusion: </strong>Our study emphasises the complex genetic landscape of DC and highlights the need for population-specific research as well as validation of GWAS-identified markers in Indians before defining them as established candidate genes.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"50"},"PeriodicalIF":1.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative chloroplast genomics and phylogenetic analysis of Oreomecon nudicaulis (Papaveraceae).","authors":"Qingbin Zhan, Yalin Huang, Xiaoming Xue, Yunxia Chen","doi":"10.1186/s12863-024-01236-8","DOIUrl":"10.1186/s12863-024-01236-8","url":null,"abstract":"<p><p>Oreomecon nudicaulis, commonly known as mountain poppy, is a significant perennial herb. In 2022, the species O. nudicaulis, which was previously classified under the genus Papaver, was reclassified within the genus Oreomecon. Nevertheless, the phylogenetic status and chloroplast genome within the genus Oreomecon have not yet been reported. This study elucidates the chloroplast genome sequence and structural features of O. nudicaulis and explores its evolutionary relationships within Papaveraceae. Using Illumina sequencing technology, the chloroplast genome of O. nudicaulis was sequenced, assembled, and annotated. The results indicate that the chloroplast genome of O. nudicaulis exhibits a typical circular quadripartite structure. The chloroplast genome is 153,903 bp in length, with a GC content of 38.87%, containing 84 protein-coding genes, 8 rRNA genes, 38 tRNA genes, and 2 pseudogenes. The genome encodes 25,815 codons, with leucine (Leu) being the most abundant codon, and the most frequently used codon is AUU. Additionally, 129 microsatellite markers were identified, with mononucleotide repeats being the most abundant (53.49%). Our phylogenetic analysis revealed that O. nudicaulis has a relatively close relationship with the genus Meconopsis within the Papaveraceae family. The phylogenetic analysis supported the taxonomic status of O. nudicaulis, as it did not form a clade with other Papaver species, consistent with the revised taxonomy of Papaveraceae. This is the first report of a phylogenomic study of the complete chloroplast genome in the genus Oreomecon, which is a significant genus worldwide. This analysis of the O. nudicaulis chloroplast genome provides a theoretical basis for research on genetic diversity, molecular marker development, and species identification, enriching genetic information and supporting the evolutionary relationships among Papaveraceae.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"49"},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}