BMC biomedical engineeringPub Date : 2019-03-18eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0007-y
Yasmeen Naz Panhwar, Fazel Naghdy, Golshah Naghdy, David Stirling, Janette Potter
{"title":"Assessment of frailty: a survey of quantitative and clinical methods.","authors":"Yasmeen Naz Panhwar, Fazel Naghdy, Golshah Naghdy, David Stirling, Janette Potter","doi":"10.1186/s42490-019-0007-y","DOIUrl":"10.1186/s42490-019-0007-y","url":null,"abstract":"<p><strong>Background: </strong>Frailty assessment is a critical approach in assessing the health status of older people. The clinical tools deployed by geriatricians to assess frailty can be grouped into two categories; using a questionnaire-based method or analyzing the physical performance of the subject. In performance analysis, the time taken by a subject to complete a physical task such as walking over a specific distance, typically three meters, is measured. The questionnaire-based method is subjective, and the time-based performance analysis does not necessarily identify the kinematic characteristics of motion and their root causes. However, kinematic characteristics are crucial in measuring the degree of frailty.</p><p><strong>Results: </strong>The studies reviewed in this paper indicate that the quantitative analysis of activity of daily living, balance and gait are significant methods for assessing frailty in older people. Kinematic parameters (such as gait speed) and sensor-derived parameters are also strong markers of frailty. Seventeen gait parameters are found to be sensitive for discriminating various frailty levels. Gait velocity is the most significant parameter. Short term monitoring of daily activities is a more significant method for frailty assessment than is long term monitoring and can be implemented easily using clinical tests such as sit to stand or stand to sit. The risk of fall can be considered an outcome of frailty.</p><p><strong>Conclusion: </strong>Frailty is a multi-dimensional phenomenon that is defined by various domains; physical, social, psychological and environmental. The physical domain has proven to be essential in the objective determination of the degree of frailty in older people. The deployment of inertial sensor in clinical tests is an effective method for the objective assessment of frailty.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0007-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38456100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-03-18eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0008-x
Ahsan Ausaf Ali, Minjeong Kang, Raisa Kharbash, Yoosik Kim
{"title":"Spiropyran as a potential molecular diagnostic tool for double-stranded RNA detection.","authors":"Ahsan Ausaf Ali, Minjeong Kang, Raisa Kharbash, Yoosik Kim","doi":"10.1186/s42490-019-0008-x","DOIUrl":"https://doi.org/10.1186/s42490-019-0008-x","url":null,"abstract":"<p><strong>Background: </strong>Long double-stranded RNAs (dsRNAs) are duplex RNAs that can induce immune response when present in mammalian cells. These RNAs are historically associated with viral replication, but recent evidence suggests that human cells naturally encode endogenous dsRNAs that can regulate antiviral machineries in cellular contexts beyond immune response.</p><p><strong>Results: </strong>In this study, we use photochromic organic compound spiropyran to profile and quantitate dsRNA expression. We show that the open form of spiropyran, merocyanine, can intercalate between RNA base pairs, which leads to protonation and alteration in the spectral property of the compound. By quantifying the spectral change, we can detect and quantify dsRNA expression level, both synthetic and cellular. We further demonstrate that spiropyrans can be used as a molecular diagnostic tool to profile endogenously expressed dsRNAs. Particularly, we show that spiropyrans can robustly detect elevated dsRNA levels when colorectal cancer cells are treated with 5-aza-2'-deoxycytidine, an FDA-approved DNA-demethylating agent used for chemotherapy, thus demonstrating the use of spiropyran for predicting responsiveness to the drug treatment.</p><p><strong>Conclusion: </strong>As dsRNAs are signature of virus and accumulation of dsRNAs is implicated in various degenerative disease, our work establishes potential application of spiropyrans as a simple spectral tool to diagnose human disease based on dsRNA expression.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0008-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-02-27eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0005-0
Héctor Capella-Monsonís, Stephen Kearns, Jack Kelly, Dimitrios I Zeugolis
{"title":"Battling adhesions: from understanding to prevention.","authors":"Héctor Capella-Monsonís, Stephen Kearns, Jack Kelly, Dimitrios I Zeugolis","doi":"10.1186/s42490-019-0005-0","DOIUrl":"10.1186/s42490-019-0005-0","url":null,"abstract":"<p><p>Adhesions represent a major burden in clinical practice, particularly following abdominal, intrauterine, pericardial and tendon surgical procedures. Adhesions are initiated by a disruption in the epithelial or mesothelial layer of tissue, which leads to fibrin adhesion sites due to the downregulation of fibrinolytic activity and an increase in fibrin deposition. Hence, the metabolic events involved in tissue healing, coagulation, inflammation, fibrinolysis and angiogenesis play a pivotal role in adhesion formation. Understanding these events, their interactions and their influence on the development of post-surgical adhesion is crucial for the development of effective therapies to prevent them. Mechanical barriers, antiadhesive agents and combination thereof are customarily used in the battle against adhesions. Although these systems seem to be effective at reducing adhesions in clinical procedures, their prevention remains still elusive, imposing the need for new antiadhesive strategies.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-01-30eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0003-2
Juan P Vigueras-Guillén, Busra Sari, Stanley F Goes, Hans G Lemij, Jeroen van Rooij, Koenraad A Vermeer, Lucas J van Vliet
{"title":"Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation.","authors":"Juan P Vigueras-Guillén, Busra Sari, Stanley F Goes, Hans G Lemij, Jeroen van Rooij, Koenraad A Vermeer, Lucas J van Vliet","doi":"10.1186/s42490-019-0003-2","DOIUrl":"https://doi.org/10.1186/s42490-019-0003-2","url":null,"abstract":"<p><strong>Background: </strong>Corneal endothelium (CE) images provide valuable clinical information regarding the health state of the cornea. Computation of the clinical morphometric parameters requires the segmentation of endothelial cell images. Current techniques to image the endothelium in vivo deliver low quality images, which makes automatic segmentation a complicated task. Here, we present two convolutional neural networks (CNN) to segment CE images: a global fully convolutional approach based on U-net, and a local sliding-window network (SW-net). We propose to use probabilistic labels instead of binary, we evaluate a preprocessing method to enhance the contrast of images, and we introduce a postprocessing method based on Fourier analysis and watershed to convert the CNN output images into the final cell segmentation. Both methods are applied to 50 images acquired with an SP-1P Topcon specular microscope. Estimates are compared against a manual delineation made by a trained observer.</p><p><strong>Results: </strong>U-net (AUC=0.9938) yields slightly sharper, clearer images than SW-net (AUC=0.9921). After postprocessing, U-net obtains a DICE=0.981 and a MHD=0.22 (modified Hausdorff distance), whereas SW-net yields a DICE=0.978 and a MHD=0.30. U-net generates a wrong cell segmentation in only 0.48% of the cells, versus 0.92% for the SW-net. U-net achieves statistically significant better precision and accuracy than both, Topcon and SW-net, for the estimates of three clinical parameters: cell density (ECD), polymegethism (CV), and pleomorphism (HEX). The mean relative error in U-net for the parameters is 0.4% in ECD, 2.8% in CV, and 1.3% in HEX. The computation time to segment an image and estimate the parameters is barely a few seconds.</p><p><strong>Conclusions: </strong>Both methods presented here provide a statistically significant improvement over the state of the art. U-net has reached the smallest error rate. We suggest a segmentation refinement based on our previous work to further improve the performance.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0003-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38456098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-01-30eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0004-1
Alexandros Houssein, Alan Kawarai Lefor, Antonio Veloso, Zhi Yang, Jong Chul Ye, Dimitrios I Zeugolis, Sang Yup Lee
{"title":"BMC Biomedical Engineering: a home for all biomedical engineering research.","authors":"Alexandros Houssein, Alan Kawarai Lefor, Antonio Veloso, Zhi Yang, Jong Chul Ye, Dimitrios I Zeugolis, Sang Yup Lee","doi":"10.1186/s42490-019-0004-1","DOIUrl":"10.1186/s42490-019-0004-1","url":null,"abstract":"<p><p>This editorial accompanies the launch of <i>BMC Biomedical Engineering</i>, a new open access, peer-reviewed journal within the BMC series, which seeks to publish articles on all aspects of biomedical engineering. As one of the first engineering journals within the BMC series portfolio, it will support and complement existing biomedical communities, but at the same time, it will provide an open access home for engineering research. By publishing original research, methodology, database, software and review articles, <i>BMC Biomedical Engineering</i> will disseminate quality research, with a focus on studies that further the understanding of human disease and that contribute towards the improvement of human health.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-01-30eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0002-3
Margit Alt Murphy, Filip Bergquist, Bengt Hagström, Niina Hernández, Dongni Johansson, Fredrik Ohlsson, Leif Sandsjö, Jan Wipenmyr, Kristina Malmgren
{"title":"An upper body garment with integrated sensors for people with neurological disorders - early development and evaluation.","authors":"Margit Alt Murphy, Filip Bergquist, Bengt Hagström, Niina Hernández, Dongni Johansson, Fredrik Ohlsson, Leif Sandsjö, Jan Wipenmyr, Kristina Malmgren","doi":"10.1186/s42490-019-0002-3","DOIUrl":"https://doi.org/10.1186/s42490-019-0002-3","url":null,"abstract":"<p><strong>Background: </strong>In neurology and rehabilitation the primary interest for using wearables is to supplement traditional patient assessment and monitoring in hospital settings with continuous data collection at home and in community settings. The aim of this project was to develop a novel wearable garment with integrated sensors designed for continuous monitoring of physiological and movement related variables to evaluate progression, tailor treatments and improve diagnosis in epilepsy, Parkinson's disease and stroke. In this paper the early development and evaluation of a prototype designed to monitor movements and heart rate is described. An iterative development process and evaluation of an upper body garment with integrated sensors included: identification of user needs, specification of technical and garment requirements, garment development and production as well as evaluation of garment design, functionality and usability. The project is a multidisciplinary collaboration with experts from medical, engineering, textile, and material science within the wearITmed consortium. The work was organized in regular meetings, task groups and hands-on workshops. User needs were identified using results from a mixed-methods systematic review, a focus group study and expert groups. Usability was evaluated in 19 individuals (13 controls, 6 patients with Parkinson's disease) using semi-structured interviews and qualitative content analysis.</p><p><strong>Results: </strong>The garment was well accepted by the users regarding design and comfort, although the users were cautious about the technology and suggested improvements. All electronic components passed a washability test. The most robust data was obtained from accelerometer and gyroscope sensors while the electrodes for heart rate registration were sensitive to motion artefacts. The algorithm development within the wearITmed consortium has shown promising results.</p><p><strong>Conclusions: </strong>The prototype was accepted by the users. Technical improvements are needed, but preliminary data indicate that the garment has potential to be used as a tool for diagnosis and treatment selection and could provide added value for monitoring seizures in epilepsy, fluctuations in PD and activity levels in stroke. Future work aims to improve the prototype further, develop algorithms, and evaluate the functionality and usability in targeted patient groups. The potential of incorporating blood pressure and heart-rate variability monitoring will also be explored.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0002-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-01-30eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0001-4
Alan Kawarai Lefor
{"title":"Robotic and laparoscopic surgery of the pancreas: an historical review.","authors":"Alan Kawarai Lefor","doi":"10.1186/s42490-019-0001-4","DOIUrl":"10.1186/s42490-019-0001-4","url":null,"abstract":"<p><p>Surgery of the pancreas is a relatively new field, with operative series appearing only in the last 50 years. Surgery of the pancreas is technically challenging. The entire field of general surgery changed radically in 1987 with the introduction of the laparoscopic cholecystectomy. Minimally Invasive surgical techniques rapidly became utilized worldwide for gallbladder surgery and were then adapted to other abdominal operations. These techniques are used regularly for surgery of the pancreas including distal pancreatectomy and pancreatoduodenectomy. The progression from open surgery to laparoscopy to robotic surgery has occurred for many operations including adrenalectomy, thyroidectomy, colon resection, prostatectomy, gastrectomy and others. Data to show a benefit to the patient are scarce for robotic surgery, although both laparoscopic and robotic surgery of the pancreas have been shown not to be inferior with regard to major operative and oncologic outcomes. While there were serious concerns when laparoscopy was first used in patients with malignancies, robotic surgery has been used in many benign and malignant conditions with no obvious deterioration of outcomes. Robotic surgery for malignancies of the pancreas is well accepted and expanding to more centers. The importance of centers of excellence, surgeon experience supported by a codified mastery-based training program and international registries is widely accepted. Robotic pancreatic surgery is associated with slightly decreased blood loss and decreased length of stay compared to open surgery. Major oncologic outcomes appear to have been preserved, with some studies showing higher rates of R0 resection and tumor-free margins. Patients with lesions of the pancreas should find a surgeon they trust and do not need to be concerned with the operative approach used for their resection. The step-wise approach that has characterized the growth in robotic surgery of the pancreas, in contradistinction to the frenzy that accompanied the introduction of laparoscopic cholecystectomy, has allowed the identification of areas for improvement, many of which lie at the junction of engineering and medical practice. Refinements in robotic surgery depend on a partnership between engineers and clinicians.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0001-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>In vitro</i> tissue-engineered adipose constructs for modeling disease.","authors":"Connor S Murphy, Lucy Liaw, Michaela R Reagan","doi":"10.1186/s42490-019-0027-7","DOIUrl":"10.1186/s42490-019-0027-7","url":null,"abstract":"<p><strong>Background: </strong>Adipose tissue is a vital tissue in mammals that functions to insulate our bodies, regulate our internal thermostat, protect our organs, store energy (and burn energy, in the case of beige and brown fat), and provide endocrine signals to other organs in the body. Tissue engineering of adipose and other soft tissues may prove essential for people who have lost this tissue from trauma or disease.</p><p><strong>Main text: </strong>In this review, we discuss the applications of tissue-engineered adipose tissue specifically for disease modeling applications. We provide a basic background to adipose depots and describe three-dimensional (3D) <i>in vitro</i> adipose models for obesity, diabetes, and cancer research applications.</p><p><strong>Conclusions: </strong>The approaches to engineering 3D adipose models are diverse in terms of scaffold type (hydrogel-based, silk-based and scaffold-free), species of origin (<i>H. sapiens</i> and <i>M. musculus</i>) and cell types used, which allows researchers to choose a model that best fits their application, whether it is optimization of adipocyte differentiation or studying the interaction of adipocytes and other cell types like endothelial cells. <i>In vitro</i> 3D adipose tissue models support discoveries into the mechanisms of adipose-related diseases and thus support the development of novel anti-cancer or anti-obesity/diabetes therapies.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37706624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Models of tendon development and injury.","authors":"Sophia K Theodossiou, Nathan R Schiele","doi":"10.1186/s42490-019-0029-5","DOIUrl":"https://doi.org/10.1186/s42490-019-0029-5","url":null,"abstract":"<p><p>Tendons link muscle to bone and transfer forces necessary for normal movement. Tendon injuries can be debilitating and their intrinsic healing potential is limited. These challenges have motivated the development of model systems to study the factors that regulate tendon formation and tendon injury. Recent advances in understanding of embryonic and postnatal tendon formation have inspired approaches that aimed to mimic key aspects of tendon development. Model systems have also been developed to explore factors that regulate tendon injury and healing. We highlight current model systems that explore developmentally inspired cellular, mechanical, and biochemical factors in tendon formation and tenogenic stem cell differentiation. Next, we discuss in vivo, in vitro, ex vivo, and computational models of tendon injury that examine how mechanical loading and biochemical factors contribute to tendon pathologies and healing. These tendon development and injury models show promise for identifying the factors guiding tendon formation and tendon pathologies, and will ultimately improve regenerative tissue engineering strategies and clinical outcomes.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0029-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37675816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}