Artificial intelligence in the life sciences最新文献

筛选
英文 中文
An in silico pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition 发现多靶点配体的硅管道:基于DNMT1/HDAC2抑制的外源性多药理学案例研究
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100008
Fernando D. Prieto-Martínez , Eli Fernández-de Gortari , José L. Medina-Franco , L. Michel Espinoza-Fonseca
{"title":"An in silico pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition","authors":"Fernando D. Prieto-Martínez ,&nbsp;Eli Fernández-de Gortari ,&nbsp;José L. Medina-Franco ,&nbsp;L. Michel Espinoza-Fonseca","doi":"10.1016/j.ailsci.2021.100008","DOIUrl":"10.1016/j.ailsci.2021.100008","url":null,"abstract":"<div><p>The search for novel therapeutic compounds remains an overwhelming task owing to the time-consuming and expensive nature of the drug development process and low success rates. Traditional methodologies that rely on the one drug-one target paradigm have proven insufficient for the treatment of multifactorial diseases, leading to a shift to multitarget approaches. In this emerging paradigm, molecules with off-target and promiscuous interactions may result in preferred therapies. In this study, we developed a general pipeline combining machine learning algorithms and a deep generator network to train a dual inhibitor classifier capable of identifying putative pharmacophoric traits. As a case study, we focused on dual inhibitors targeting DNA methyltransferase 1 (DNMT) and histone deacetylase 2 (HDAC2), two enzymes that play a central role in epigenetic regulation. We used this approach to identify dual inhibitors from a novel large natural product database in the public domain. We used docking and atomistic simulations as complementary approaches to establish the ligand-interaction profiles between the best hits and DNMT1/HDAC2. By using the combined ligand- and structure-based approaches, we discovered two promising novel scaffolds that can be used to simultaneously target both DNMT1 and HDAC2. We conclude that the flexibility and adaptability of the proposed pipeline has predictive capabilities of similar or derivative methods and is readily applicable to the discovery of small molecules targeting many other therapeutically relevant proteins.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ailsci.2021.100008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9530984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Chemistry-centric explanation of machine learning models 以化学为中心解释机器学习模型
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100009
Raquel Rodríguez-Pérez , Jürgen Bajorath
{"title":"Chemistry-centric explanation of machine learning models","authors":"Raquel Rodríguez-Pérez ,&nbsp;Jürgen Bajorath","doi":"10.1016/j.ailsci.2021.100009","DOIUrl":"10.1016/j.ailsci.2021.100009","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266731852100009X/pdfft?md5=6bf9c6213d02c78ea314eab068194508&pid=1-s2.0-S266731852100009X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48664977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Novel computational models offer alternatives to animal testing for assessing eye irritation and corrosion potential of chemicals 新的计算模型为评估化学品的眼睛刺激和腐蚀潜力提供了替代动物试验的方法
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100028
Arthur C. Silva , Joyce V.V.B. Borba , Vinicius M. Alves , Steven U.S. Hall , Nicholas Furnham , Nicole Kleinstreuer , Eugene Muratov , Alexander Tropsha , Carolina Horta Andrade
{"title":"Novel computational models offer alternatives to animal testing for assessing eye irritation and corrosion potential of chemicals","authors":"Arthur C. Silva ,&nbsp;Joyce V.V.B. Borba ,&nbsp;Vinicius M. Alves ,&nbsp;Steven U.S. Hall ,&nbsp;Nicholas Furnham ,&nbsp;Nicole Kleinstreuer ,&nbsp;Eugene Muratov ,&nbsp;Alexander Tropsha ,&nbsp;Carolina Horta Andrade","doi":"10.1016/j.ailsci.2021.100028","DOIUrl":"10.1016/j.ailsci.2021.100028","url":null,"abstract":"<div><p>Eye irritation and corrosion are fundamental considerations in developing chemicals to be used in or near the eye, from cleaning products to ophthalmic solutions. Unfortunately, animal testing is currently the standard method to identify compounds that cause eye irritation or corrosion. Yet, there is growing pressure on the part of regulatory agencies both in the USA and abroad to develop New Approach Methodologies (NAMs) that help reduce the need for animal testing and address unmet need to modernize safety evaluation of chemical hazards. In furthering the development and applications of computational NAMs in chemical safety assessment, in this study we have collected the largest expertly curated dataset of compounds tested for eye irritation and corrosion, and employed this data to build and validate binary and multi-classification Quantitative Structure-Activity Relationships (QSAR) models that can reliably assess eye irritation/corrosion potential of novel untested compounds. QSAR models were generated with Random Forest (RF) and Multi-Descriptor Read Across (MuDRA) machine learning (ML) methods, and validated using a 5-fold external cross-validation protocol. These models demonstrated high balanced accuracy (CCR of 0.68–0.88), sensitivity (SE of 0.61–0.84), positive predictive value (PPV of 0.65–0.90), specificity (SP of 0.56–0.91), and negative predictive value (NPV of 0.68–0.85). Overall, MuDRA models outperformed RF models and were applied to predict compounds’ irritation/corrosion potential from the Inactive Ingredient Database, which contains components present in FDA-approved drug products, and from the Cosmetic Ingredient Database, the European Commission source of information on cosmetic substances. All models built and validated in this study are publicly available at the STopTox web portal (<span>https://stoptox.mml.unc.edu/</span><svg><path></path></svg>). These models can be employed as reliable tools for identifying potential eye irritant/corrosive compounds.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40588277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Current status of active learning for drug discovery 药物发现中主动学习的现状
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100023
Jie Yu , Xutong Li , Mingyue Zheng
{"title":"Current status of active learning for drug discovery","authors":"Jie Yu ,&nbsp;Xutong Li ,&nbsp;Mingyue Zheng","doi":"10.1016/j.ailsci.2021.100023","DOIUrl":"10.1016/j.ailsci.2021.100023","url":null,"abstract":"<div><p>Active learning has been widely used in drug discovery and design in recent years. In this viewpoint, we will briefly summarize applications of AL for drug discovery and propose two potential limitations of research in this field.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000234/pdfft?md5=4b66ffe5aa91d2b4ff6b1d0f8fc4a84c&pid=1-s2.0-S2667318521000234-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46279614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Machine learning in agriculture domain: A state-of-art survey 农业领域的机器学习:现状调查
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100010
Vishal Meshram , Kailas Patil , Vidula Meshram , Dinesh Hanchate , S.D. Ramkteke
{"title":"Machine learning in agriculture domain: A state-of-art survey","authors":"Vishal Meshram ,&nbsp;Kailas Patil ,&nbsp;Vidula Meshram ,&nbsp;Dinesh Hanchate ,&nbsp;S.D. Ramkteke","doi":"10.1016/j.ailsci.2021.100010","DOIUrl":"10.1016/j.ailsci.2021.100010","url":null,"abstract":"<div><p>Food is considered as a basic need of human being which can be satisfied through farming. Agriculture not only fulfills humans’ basic needs, but also considered as source of employment worldwide. Agriculture is considered as a backbone of economy and source of employment in the developing countries like India. Agriculture contributes 15.4% in the GDP of India. Agriculture activities are broadly categorized into three major areas: pre-harvesting, harvesting and post harvesting. Advancement in area of machine learning has helped improving gains in agriculture. Machine learning is the current technology which is benefiting farmers to minimize the losses in the farming by providing rich recommendations and insights about the crops. This paper presents an extensive survey of latest machine learning application in agriculture to alleviate the problems in the three areas of pre-harvesting, harvesting and post-harvesting. Application of machine learning in agriculture allows more efficient and precise farming with less human manpower with high quality production.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000106/pdfft?md5=d2887b03e3cdff4a52c5bc0462338732&pid=1-s2.0-S2667318521000106-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46325215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 107
BeeToxAI: An artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees BeeToxAI:一款基于人工智能的网络应用程序,用于评估化学品对蜜蜂的急性毒性
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100013
José T. Moreira-Filho , Rodolpho C. Braga , Jade Milhomem Lemos , Vinicius M. Alves , Joyce V.V.B. Borba , Wesley S. Costa , Nicole Kleinstreuer , Eugene N. Muratov , Carolina Horta Andrade , Bruno J. Neves
{"title":"BeeToxAI: An artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees","authors":"José T. Moreira-Filho ,&nbsp;Rodolpho C. Braga ,&nbsp;Jade Milhomem Lemos ,&nbsp;Vinicius M. Alves ,&nbsp;Joyce V.V.B. Borba ,&nbsp;Wesley S. Costa ,&nbsp;Nicole Kleinstreuer ,&nbsp;Eugene N. Muratov ,&nbsp;Carolina Horta Andrade ,&nbsp;Bruno J. Neves","doi":"10.1016/j.ailsci.2021.100013","DOIUrl":"10.1016/j.ailsci.2021.100013","url":null,"abstract":"<div><p>Chemically induced toxicity is the leading cause of recent extinction of honey bees. In this regard, we developed an innovative artificial intelligence-based web app (BeeToxAI) for assessing the acute toxicity of chemicals to <em>Apis mellifera</em>. Initially, we developed and externally validated QSAR models for classification (external set accuracy ∼91%) through the combination of Random Forest and molecular fingerprints to predict the potential for chemicals to cause acute contact toxicity and acute oral toxicity to honey bees. Then, we developed and externally validated regression QSAR models (<span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> = 0.75) using Feedforward Neural Networks (FNNs). Afterward, the best models were implemented in the publicly available BeeToxAI web app (<span>http://beetoxai.labmol.com.br/</span><svg><path></path></svg><u>)</u>. The outputs of BeeToxAI are: toxicity predictions with estimated confidence, applicability domain estimation, and color-coded maps of relative structure fragment contributions to toxicity. As an additional assessment of BeeToxAI performance, we collected an external set of pesticides with known bee toxicity that were not included in our modeling dataset. BeeToxAI classification models were able to predict four out of five pesticides correctly. The acute contact toxicity model correctly predicted all of the eight pesticides. Here we demonstrate that BeeToxAI can be used as a rapid new approach methodology for predicting acute toxicity of chemicals in honey bees.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000131/pdfft?md5=f4b6e96a7da27f813679c0aab8f1014d&pid=1-s2.0-S2667318521000131-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48100929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Quantifying sources of uncertainty in drug discovery predictions with probabilistic models 用概率模型量化药物发现预测中的不确定性来源
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100004
Stanley E. Lazic , Dominic P. Williams
{"title":"Quantifying sources of uncertainty in drug discovery predictions with probabilistic models","authors":"Stanley E. Lazic ,&nbsp;Dominic P. Williams","doi":"10.1016/j.ailsci.2021.100004","DOIUrl":"10.1016/j.ailsci.2021.100004","url":null,"abstract":"<div><p>Knowing the uncertainty in a prediction is critical when making expensive investment decisions and when patient safety is paramount, but machine learning (ML) models in drug discovery typically only provide a single best estimate and ignore all sources of uncertainty. Predictions from these models may therefore be over-confident, which can put patients at risk and waste resources when compounds that are destined to fail are further developed. Probabilistic predictive models (PPMs) can incorporate all sources of uncertainty and they return a distribution of predicted values that represents the uncertainty in the prediction. We describe seven sources of uncertainty in PPMs: data, distribution function, mean function, variance function, link function(s), parameters, and hyperparameters. We use toxicity prediction as a running example, but the same principles apply for all prediction models. The consequences of ignoring uncertainty and how PPMs account for uncertainty are also described. We aim to make the discussion accessible to a broad non-mathematical audience. Equations are provided to make ideas concrete for mathematical readers (but can be skipped without loss of understanding) and code is available for computational researchers (<span>https://github.com/stanlazic/ML_uncertainty_quantification</span><svg><path></path></svg>).</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ailsci.2021.100004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90695567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
AutoGGN: A gene graph network AutoML tool for multi-omics research AutoGGN:一个用于多组学研究的基因图网络AutoML工具
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100019
Lei Zhang , Wen Shen , Ping Li , Chi Xu , Denghui Liu , Wenjun He , Zhimeng Xu , Deyong Wang , Chenyi Zhang , Hualiang Jiang , Mingyue Zheng , Nan Qiao
{"title":"AutoGGN: A gene graph network AutoML tool for multi-omics research","authors":"Lei Zhang ,&nbsp;Wen Shen ,&nbsp;Ping Li ,&nbsp;Chi Xu ,&nbsp;Denghui Liu ,&nbsp;Wenjun He ,&nbsp;Zhimeng Xu ,&nbsp;Deyong Wang ,&nbsp;Chenyi Zhang ,&nbsp;Hualiang Jiang ,&nbsp;Mingyue Zheng ,&nbsp;Nan Qiao","doi":"10.1016/j.ailsci.2021.100019","DOIUrl":"https://doi.org/10.1016/j.ailsci.2021.100019","url":null,"abstract":"<div><p>Omics data can be used to identify biological characteristics from genetic to phenotypic levels during the life span of a living being, while molecular interaction networks have a fundamental impact on life activities. Integrating omics data and molecular interaction networks will help researchers delve into comprehensive information hidden in the data. Here, we propose a new multimodal method — AutoGGN — to integrate multi-omics data with molecular interaction networks based on graph convolutional neural networks (GCNs). We evaluated AutoGGN using three classification tasks: single-cell embryonic developmental stage classification, pan-cancer type classification, and breast cancer subtyping. On all three tasks, AutoGGN showed better performance than other methods. This means AutoGGN has the potential to extract insights more effectively by means of integrating molecular interaction networks with multi-omics data. Additionally, in order to provide a better understanding of how our model makes predictions, we utilized the SHAP module and identified the key genes contributing to the classification, providing insight for the design of downstream biological experiments.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000192/pdfft?md5=91b39ee64c55f03bb6fc4708ba1153ea&pid=1-s2.0-S2667318521000192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136694940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast-bonito: A faster deep learning based basecaller for nanopore sequencing Fast-bonito:一个更快的基于深度学习的纳米孔测序碱基调用器
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100011
Zhimeng Xu , Yuting Mai , Denghui Liu , Wenjun He , Xinyuan Lin , Chi Xu , Lei Zhang , Xin Meng , Joseph Mafofo , Walid Abbas Zaher , Ashish Koshy , Yi Li , Nan Qiao
{"title":"Fast-bonito: A faster deep learning based basecaller for nanopore sequencing","authors":"Zhimeng Xu ,&nbsp;Yuting Mai ,&nbsp;Denghui Liu ,&nbsp;Wenjun He ,&nbsp;Xinyuan Lin ,&nbsp;Chi Xu ,&nbsp;Lei Zhang ,&nbsp;Xin Meng ,&nbsp;Joseph Mafofo ,&nbsp;Walid Abbas Zaher ,&nbsp;Ashish Koshy ,&nbsp;Yi Li ,&nbsp;Nan Qiao","doi":"10.1016/j.ailsci.2021.100011","DOIUrl":"10.1016/j.ailsci.2021.100011","url":null,"abstract":"<div><p>Nanopore sequencing from Oxford Nanopore Technologies (ONT) is a promising third-generation sequencing (TGS) technology that generates relatively longer sequencing reads compared to the next-generation sequencing (NGS) technology. A basecaller is a piece of software that translates the original electrical current signals into nucleotide sequences. The accuracy of the basecaller is crucially important to downstream analysis. Bonito is a deep learning-based basecaller recently developed by ONT. Its neural network architecture is composed of a single convolutional layer followed by three stacked bidirectional gated recurrent unit (GRU) layers. Although Bonito has achieved state-of-the-art base calling accuracy, its speed is too slow to be used in production. We therefore developed Fast-Bonito, by using the neural architecture search (NAS) technique to search for a brand-new neural network backbone, and trained it from scratch using several advanced deep learning model training techniques. The new Fast-Bonito model balanced performance in terms of speed and accuracy. Fast-Bonito was 153.8% faster than the original Bonito on NVIDIA V100 GPU. When running on HUAWEI Ascend 910 NPU, Fast-Bonito was 565% faster than the original Bonito. The accuracy of Fast-Bonito was also slightly higher than that of Bonito. We have made Fast-Bonito open source, hoping it will boost the adoption of TGS in both academia and industry.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000118/pdfft?md5=fd79b6a6d202e645142894875f87c96d&pid=1-s2.0-S2667318521000118-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48882457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Second-generation artificial intelligence approaches for life science research 生命科学研究的第二代人工智能方法
Artificial intelligence in the life sciences Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100026
Jürgen Bajorath
{"title":"Second-generation artificial intelligence approaches for life science research","authors":"Jürgen Bajorath","doi":"10.1016/j.ailsci.2021.100026","DOIUrl":"10.1016/j.ailsci.2021.100026","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266731852100026X/pdfft?md5=5aa4de63e2d6fd19645b6729085c8c1c&pid=1-s2.0-S266731852100026X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47299019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信