Advances in biological regulation最新文献

筛选
英文 中文
Advances in MDS/AML and inositide signalling MDS/AML和肌苷信号传导的研究进展
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2023.100955
Alessia De Stefano , Maria Vittoria Marvi , Antonietta Fazio , James A. McCubrey , Pann-Ghill Suh , Stefano Ratti , Giulia Ramazzotti , Lucia Manzoli , Lucio Cocco , Matilde Y. Follo
{"title":"Advances in MDS/AML and inositide signalling","authors":"Alessia De Stefano ,&nbsp;Maria Vittoria Marvi ,&nbsp;Antonietta Fazio ,&nbsp;James A. McCubrey ,&nbsp;Pann-Ghill Suh ,&nbsp;Stefano Ratti ,&nbsp;Giulia Ramazzotti ,&nbsp;Lucia Manzoli ,&nbsp;Lucio Cocco ,&nbsp;Matilde Y. Follo","doi":"10.1016/j.jbior.2023.100955","DOIUrl":"10.1016/j.jbior.2023.100955","url":null,"abstract":"<div><p>Aberrant signaling pathways regulating proliferation and differentiation of hematopoietic stem cells (HSCs) can contribute to disease pathogenesis and neoplastic growth. Phosphoinositides (PIs) are inositol phospholipids that are implicated in the regulation of critical signaling pathways: aberrant regulation of Phospholipase C (PLC) beta1, PLCgamma1 and the PI3K/Akt/mTOR pathway play essential roles in the pathogenesis of Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML).</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100955"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9540971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Phospholipase D and cancer metastasis: A focus on exosomes 磷脂酶D与肿瘤转移:以外泌体为中心
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100924
Alexander Wolf, Emeline Tanguy, Qili Wang, Stéphane Gasman, Nicolas Vitale
{"title":"Phospholipase D and cancer metastasis: A focus on exosomes","authors":"Alexander Wolf,&nbsp;Emeline Tanguy,&nbsp;Qili Wang,&nbsp;Stéphane Gasman,&nbsp;Nicolas Vitale","doi":"10.1016/j.jbior.2022.100924","DOIUrl":"10.1016/j.jbior.2022.100924","url":null,"abstract":"<div><p>In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100924"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9173474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Key to photograph of participants 参加者照片的钥匙
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100952
{"title":"Key to photograph of participants","authors":"","doi":"10.1016/j.jbior.2022.100952","DOIUrl":"10.1016/j.jbior.2022.100952","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100952"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10422826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AP-4 loss in CRISPR-edited zebrafish affects early embryo development crispr编辑的斑马鱼AP-4缺失影响早期胚胎发育
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100945
Olivia G. Pembridge , Natalie S. Wallace , Thomas P. Clements , Lauren P. Jackson
{"title":"AP-4 loss in CRISPR-edited zebrafish affects early embryo development","authors":"Olivia G. Pembridge ,&nbsp;Natalie S. Wallace ,&nbsp;Thomas P. Clements ,&nbsp;Lauren P. Jackson","doi":"10.1016/j.jbior.2022.100945","DOIUrl":"10.1016/j.jbior.2022.100945","url":null,"abstract":"<div><p>Mutations in the heterotetrametric adaptor protein 4 (AP-4; ε/β4/μ4/σ4 subunits) membrane trafficking coat complex lead to complex neurological disorders characterized by spastic paraplegia, microcephaly, and intellectual disabilities. Understanding molecular mechanisms underlying these disorders continues to emerge with recent identification of an essential autophagy protein, ATG9A, as an AP-4 cargo. Significant progress has been made uncovering AP-4 function in cell culture and patient-derived cell lines, and ATG9A trafficking by AP-4 is considered a potential target for gene therapy approaches. In contrast, understanding how AP-4 trafficking affects development and function at the organismal level has long been hindered by loss of conserved AP-4 genes in key model systems (<em>S. cerevisiae</em>, <em>C. elegans</em>, <em>D. melanogaster</em>). However, zebrafish (<em>Danio rerio</em>) have retained AP-4 and can serve as an important model system for studying both the nervous system and overall development. We undertook gene editing in zebrafish using a CRISPR-ExoCas9 knockout system to determine how loss of single AP-4, or its accessory protein tepsin, genes affect embryo development 24 h post-fertilization (hpf). Single gene-edited embryos display abnormal head morphology and neural necrosis. We further conducted the first exploration of how AP-4 single gene knockouts in zebrafish embryos affect expression levels and patterns of two autophagy genes, <em>atg9a</em> and <em>map1lc3b</em>. This work suggests zebrafish may be further adapted and developed as a tool to uncover AP-4 function in membrane trafficking and autophagy in the context of a model organism.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100945"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The mutational profiles and corresponding therapeutic implications of PI3K mutations in cancer 癌症中PI3K突变的突变谱及其相应的治疗意义
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100934
Nathan K. VanLandingham , Andrew Nazarenko , Jennifer R. Grandis , Daniel E. Johnson
{"title":"The mutational profiles and corresponding therapeutic implications of PI3K mutations in cancer","authors":"Nathan K. VanLandingham ,&nbsp;Andrew Nazarenko ,&nbsp;Jennifer R. Grandis ,&nbsp;Daniel E. Johnson","doi":"10.1016/j.jbior.2022.100934","DOIUrl":"10.1016/j.jbior.2022.100934","url":null,"abstract":"<div><p>Genetic alterations of the <em>PIK3CA</em> gene, encoding the p110α catalytic subunit of PI3Kα enzyme, are found in a broad spectrum of human cancers. Many cancer-associated <em>PIK3CA</em> mutations occur at 3 hotspot locations and are termed canonical mutations. Canonical mutations result in hyperactivation of PI3K and promote oncogenesis via the PI3K/AKT/mTOR and PI3K/COX-2/PGE2 signaling pathways. These mutations also may serve as predictive biomarkers of response to PI3K inhibitors, as well as NSAID therapy. A large number of non-canonical <em>PIK3CA</em> mutations have also been identified in human tumors, but their functional properties are poorly understood. Here we review the landscape of <em>PIK3CA</em> mutations in different cancers and efforts underway to define the functional properties of non-canonical <em>PIK3CA</em> mutations. In addition, we summarize what has been learned from clinical trials of PI3K inhibitors as well as current trials incorporating these molecular targeting agents.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100934"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992323/pdf/nihms-1873733.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9525297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flimsy Overlay 脆弱的叠加
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100951
{"title":"Flimsy Overlay","authors":"","doi":"10.1016/j.jbior.2022.100951","DOIUrl":"10.1016/j.jbior.2022.100951","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100951"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10461014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silencing effects of mutant RAS signalling on transcriptomes 突变体RAS信号对转录组的沉默作用
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100936
Christine Sers , Reinhold Schäfer
{"title":"Silencing effects of mutant RAS signalling on transcriptomes","authors":"Christine Sers ,&nbsp;Reinhold Schäfer","doi":"10.1016/j.jbior.2022.100936","DOIUrl":"10.1016/j.jbior.2022.100936","url":null,"abstract":"<div><p>Mutated genes of the RAS family encoding small GTP-binding proteins drive numerous cancers, including pancreatic, colon and lung tumors. Besides the numerous effects of mutant RAS gene expression on aberrant proliferation, transformed phenotypes, metabolism, and therapy resistance, the most striking consequences of chronic RAS activation are changes of the genetic program. By performing systematic gene expression studies in cellular models that allow comparisons of pre-neoplastic with RAS-transformed cells, we and others have estimated that 7 percent or more of all transcripts are altered in conjunction with the expression of the oncogene. In this context, the number of up-regulated transcripts approximates that of down-regulated transcripts. While up-regulated transcription factors such as MYC, FOSL1, and HMGA2 have been identified and characterized as RAS-responsive drivers of the altered transcriptome, the suppressed factors have been less well studied as potential regulators of the genetic program and transformed phenotype in the breadth of their occurrence. We therefore have collected information on downregulated RAS-responsive factors and discuss their potential role as tumor suppressors that are likely to antagonize active cancer drivers. To better understand the active mechanisms that entail anti-RAS function and those that lead to loss of tumor suppressor activity, we focus on the tumor suppressor HREV107 (alias PLAAT3 [Phospholipase A and acyltransferase 3], PLA2G16 [Phospholipase A2, group XVI] and HRASLS3 [HRAS-like suppressor 3]). Inactivating HREV107 mutations in tumors are extremely rare, hence epigenetic causes modulated by the RAS pathway are likely to lead to down-regulation and loss of function.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100936"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9173956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel aspects of intra-islet communication: Primary cilia and filopodia 胰岛内通讯的新方面:初级纤毛和丝状足
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100919
Noah Moruzzi, Barbara Leibiger, Christopher J. Barker, Ingo B. Leibiger, Per-Olof Berggren
{"title":"Novel aspects of intra-islet communication: Primary cilia and filopodia","authors":"Noah Moruzzi,&nbsp;Barbara Leibiger,&nbsp;Christopher J. Barker,&nbsp;Ingo B. Leibiger,&nbsp;Per-Olof Berggren","doi":"10.1016/j.jbior.2022.100919","DOIUrl":"10.1016/j.jbior.2022.100919","url":null,"abstract":"<div><p>Pancreatic islets are micro-organs composed of a mixture of endocrine and non-endocrine cells, where the former secrete hormones and peptides necessary for metabolic homeostasis. Through vasculature and innervation the cells within the islets are in communication with the rest of the body, while they interact with each other through juxtacrine, paracrine and autocrine signals, resulting in fine-tuned sensing and response to stimuli. In this context, cellular protrusion in islet cells, such as primary cilia and filopodia, have gained attention as potential signaling hubs. During the last decade, several pieces of evidence have shown how the primary cilium is required for islet vascularization, function and homeostasis. These findings have been possible thanks to the development of ciliary/basal body specific knockout models and technological advances in microscopy, which allow longitudinal monitoring of engrafted islets transplanted in the anterior chamber of the eye in living animals. Using this technique in combination with optogenetics, new potential paracrine interactions have been suggested. For example, reshaping and active movement of filopodia-like protrusions of δ-cells were visualized <em>in vivo</em>, suggesting a continuous cell remodeling to increase intercellular contacts. In this review, we discuss these recent discoveries regarding primary cilia and filopodia and their role in islet homeostasis and intercellular islet communication.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100919"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Sixty-third international symposium on biological regulation and enzyme activity in normal and neoplastic tissues 第六十三届正常和肿瘤组织的生物调控和酶活性国际研讨会
Advances in biological regulation Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100949
{"title":"Sixty-third international symposium on biological regulation and enzyme activity in normal and neoplastic tissues","authors":"","doi":"10.1016/j.jbior.2022.100949","DOIUrl":"10.1016/j.jbior.2022.100949","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100949"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10427839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the exceptional pre-vaccination Era East Asian COVID-19 outcomes 了解疫苗接种前东亚地区特殊的COVID-19结果
Advances in biological regulation Pub Date : 2022-12-01 DOI: 10.1016/j.jbior.2022.100916
Jay Bhattacharya , Phillip Magness , Martin Kulldorff
{"title":"Understanding the exceptional pre-vaccination Era East Asian COVID-19 outcomes","authors":"Jay Bhattacharya ,&nbsp;Phillip Magness ,&nbsp;Martin Kulldorff","doi":"10.1016/j.jbior.2022.100916","DOIUrl":"10.1016/j.jbior.2022.100916","url":null,"abstract":"<div><p>During the first year of the pandemic, East Asian countries have reported fewer infections, hospitalizations, and deaths from COVID-19 disease than most countries in Europe and the Americas. Our goal in this paper is to generate and evaluate hypothesis that may explain this striking fact. We consider five possible explanations: (1) population age structure (younger people tend to have less severe COVID-19 disease upon infection than older people); (2) the early adoption of lockdown strategies to control disease spread; (3) genetic differences between East Asian population and European and American populations that confer protection against COVID-19 disease; (4) seasonal and climactic contributors to COVID-19 spread; and (5) immunological differences between East Asian countries and the rest of the world. The evidence suggests that the first four hypotheses are unlikely to be important in explaining East Asian COVID-19 exceptionalism. Lockdowns, in particular, fail as an explanation because East Asian countries experienced similarly good infection outcomes despite vast differences in lockdown policies adopted by different countries to control the COVID-19 epidemic. The evidence to date is consistent with our fifth hypothesis – pre-existing immunity unique to East Asia – but there are still essential parts of this story left for scientists to check.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"86 ","pages":"Article 100916"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9561222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信