Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe最新文献

筛选
英文 中文
NRF2 protects lung epithelial cells from wood smoke particle toxicity NRF2 保护肺上皮细胞免受木烟颗粒毒性的伤害
Sarah E. Lacher , Tessa Schumann , Ryan Peters , Christopher Migliaccio , Andrij Holian , Matthew Slattery
{"title":"NRF2 protects lung epithelial cells from wood smoke particle toxicity","authors":"Sarah E. Lacher ,&nbsp;Tessa Schumann ,&nbsp;Ryan Peters ,&nbsp;Christopher Migliaccio ,&nbsp;Andrij Holian ,&nbsp;Matthew Slattery","doi":"10.1016/j.arres.2024.100115","DOIUrl":"10.1016/j.arres.2024.100115","url":null,"abstract":"<div><div>Wildfire smoke is a potential source of oxidative stress in lung epithelial tissue. The response to oxidative stress is controlled by the transcription factor NRF2, which is the central regulator of antioxidant gene expression. If wood smoke particle (WSP) exposure induces reactive oxygen species (ROS) in epithelial cells, then NRF2 may protect against pathological conditions resulting from increased oxidative stress through changes in gene expression. We used two lung epithelial cell lines to test this hypothesis <em>in vitro</em>: A549, which harbor a mutation resulting in constitutive activation of NRF2, and BEAS-2B, which show limited NRF2 activity under basal conditions, but high inducibility during oxidative stress. In BEAS-2B cells, WSP exposure leads to increased cellular ROS, activation of NRF2, and upregulation of the NRF2 target genes <em>NQO1, GCLM,</em> and <em>SRXN1</em>. WSP exposure also increased ROS in A549 cells, although NRF2 activation and antioxidant gene upregulation were less robust as both were basally high in this cell line. Overall, the degree of ROS induction by WSP across cell lines is dependent upon NRF2 activity, and a similar pattern was observed for WSP cytotoxicity. WSP also sensitized both cell lines to the ferroptosis inducer erastin in a manner that is correlated with NRF2 activity. Knockout of <em>NRF2</em> in A549 resulted in higher WSP-induced ROS generation, cytotoxicity, and erastin sensitivity. Taken together, these results suggest that NRF2 serves as a protective factor against wood smoke induced ROS and oxidative stress in lung epithelial cells.</div></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"13 ","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piceatannol reduces radiation-induced DNA double-strand breaks by suppressing superoxide production and enhancing ATM-dependent repair efficiency 皮夏单宁通过抑制超氧化物生成和提高依赖于 ATM 的修复效率,减少辐射诱导的 DNA 双链断裂
Tomoya Suzuki , Ryoya Tetsuka , Atsuya Iwasaki , Tsutomu Shimura , Ryoichi Hirayama , Asako J Nakamura
{"title":"Piceatannol reduces radiation-induced DNA double-strand breaks by suppressing superoxide production and enhancing ATM-dependent repair efficiency","authors":"Tomoya Suzuki ,&nbsp;Ryoya Tetsuka ,&nbsp;Atsuya Iwasaki ,&nbsp;Tsutomu Shimura ,&nbsp;Ryoichi Hirayama ,&nbsp;Asako J Nakamura","doi":"10.1016/j.arres.2024.100114","DOIUrl":"10.1016/j.arres.2024.100114","url":null,"abstract":"<div><p>In contemporary society, humans are susceptible to various radiation-borne hazards, including exposure to therapeutic modalities using low-linear energy transfer (low-LET) radiations (X-rays and γ-rays), natural high-LET radiation sourced from cosmic rays, as well as nuclear accidents such as the Fukushima Daiichi Nuclear Power Plant incident. Therefore, this threat incites an imminent necessity to develop novel radioprotective agents against a wide range of LET radiation and elucidate the underlying molecular mechanisms. This study aimed at assessing the radioprotectivity of Piceatannol (PIC), a potent antioxidant polyphenol present in abundance in passion fruit, by investigating its effects on radiation-induced reactive oxygen species (ROS) production and the consequent DNA double-strand break (DSB) capacity and cellular senescence. Specifically, total ROS was evaluated by DCFDA staining, mitochondrial superoxide by MitoSOX staining, DSB by γ-H2AX immunostaining, and cellular senescence by Senescence-associated-β-galactosidase staining.</p><p>The results demonstrated that PIC administration prior to exposure to both X-ray and high-LET radiation impeded radiation-induced DSB by suppressing ROS production. Interestingly, post-irradiation PIC treatment did not alter ROS levels but enhanced the efficiency of Ataxia Telangiectasia Mutated (ATM)-mediated DSB repair. Additionally, post-irradiation PIC treatment diminished senescence-associated beta-galactosidase levels, indicating that it hinders cellular senescence.</p><p>Conclusively, PIC exerts radioprotective effects against a wide range of LET radiation. The study findings validate the potential application of PIC not only as a radical scavenger but also as a novel DSB repair-activating radioprotective agent.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"13 ","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000213/pdfft?md5=b11373d91805a1cf814a18ae661dec23&pid=1-s2.0-S2667137924000213-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytochemical-mediated modulation of signaling pathways: A promising avenue for drug discovery 植物化学介导的信号通路调节:药物发现的前景广阔的途径
Jibon Kumar Paul , Mahir Azmal , ANM Shah Newaz Been Haque , Omar Faruk Talukder , Meghla Meem , Ajit Ghosh
{"title":"Phytochemical-mediated modulation of signaling pathways: A promising avenue for drug discovery","authors":"Jibon Kumar Paul ,&nbsp;Mahir Azmal ,&nbsp;ANM Shah Newaz Been Haque ,&nbsp;Omar Faruk Talukder ,&nbsp;Meghla Meem ,&nbsp;Ajit Ghosh","doi":"10.1016/j.arres.2024.100113","DOIUrl":"10.1016/j.arres.2024.100113","url":null,"abstract":"<div><p>Phytochemicals are bioactive compounds derived from plants, renowned for their therapeutic potential. This study explores their pivotal roles in therapy and drug development, focusing on their interactions with crucial Signaling pathways and biological processes. Phytochemicals such as curcumin from turmeric, resveratrol from grapes, and epigallocatechin gallate (EGCG) from green tea, exert their effects primarily by modulating key pathways like PI3K/AKT, MAPK-ERK, Wnt, and Hedgehog, which are integral to cellular functions and disease progression. Phytochemicals like curcumin demonstrate potent anticancer activities by inhibiting proteins involved in cell proliferation, inducing apoptosis, and suppressing angiogenesis. Phytochemicals such as resveratrol also exhibit anti-inflammatory properties by targeting cytokine production and oxidative stress pathways, thereby alleviating chronic inflammatory conditions implicated in various diseases. Their (eg. EGCG's) antioxidant capabilities help neutralize free radicals and reduce oxidative damage, contributing to cellular health and longevity. Moreover, phytochemicals play a pivotal role in metabolic disorders such as diabetes and obesity by regulating glucose metabolism, lipid profiles, and insulin sensitivity. They also show promise in neurodegenerative diseases by protecting neuronal cells, enhancing cognitive functions, and potentially mitigating neuroinflammation and oxidative stress. For instance, berberine, an alkaloid found in several plants, shows promise in regulating glucose levels and improving insulin sensitivity. Additionally, ginsenosides from ginseng are known to protect neuronal cells, enhance cognitive functions, and potentially mitigate neuroinflammation and oxidative stress in neurodegenerative diseases. Despite their promising therapeutic benefits, challenges remain, particularly in ensuring bioavailability and standardization of phytochemical extracts for clinical use. Advances in screening techniques and formulation strategies aim to enhance their efficacy and integration into modern therapeutic approaches. Their multifaceted roles in modulating cellular processes underscore their importance as potential alternatives or complements to traditional pharmacotherapies, driving innovation in drug development and personalized medicine.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"13 ","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000201/pdfft?md5=73e609cfc573df68e79c3b632927c8d7&pid=1-s2.0-S2667137924000201-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absence of mitochondrial CX9C-CX10C protein Cox12 generates oxidative and nitrosative stress in Saccharomyces cerevisiae: Implication on cellular redox homeostasis 线粒体 CX9C-CX10C 蛋白 Cox12 的缺失会在酿酒酵母中产生氧化和亚硝酸应激:对细胞氧化还原平衡的影响
Soumyajit Mukherjee , Shubhojit Das , Sourav Kumar Patra , Mayukh Das , Sanjay Ghosh , Alok Ghosh
{"title":"Absence of mitochondrial CX9C-CX10C protein Cox12 generates oxidative and nitrosative stress in Saccharomyces cerevisiae: Implication on cellular redox homeostasis","authors":"Soumyajit Mukherjee ,&nbsp;Shubhojit Das ,&nbsp;Sourav Kumar Patra ,&nbsp;Mayukh Das ,&nbsp;Sanjay Ghosh ,&nbsp;Alok Ghosh","doi":"10.1016/j.arres.2024.100112","DOIUrl":"10.1016/j.arres.2024.100112","url":null,"abstract":"<div><p>Mitochondrial intermembrane space (IMS) harbors a series of small, evolutionarily conserved redox-active cysteine-rich proteins. These proteins are essential for the functioning of cytochrome c oxidase, but their role in maintaining cellular redox processes is unknown. Here, we find out that in the absence of two such cysteine-rich Cx<sub>9</sub>C-Cx<sub>10</sub>C proteins, cytochrome c oxidase subunit 12 (Cox12) or cytochrome c oxidase assembly factor 6 (Coa6), <em>Saccharomyces cerevisiae</em> cells become sensitive under the oxidative and nitrosative stress. Interestingly, knockout of <em>COX12</em> generates a significant amount of endogenous reactive oxygen species (ROS) and reactive nitrogen species (RNS) as evidenced by FACS analysis. Moreover, cellular redox status, redox-active enzymes glutathione reductase, catalase, S-nitroso glutathione reductase, and protein nitration were significantly affected in Cox12 null cells. Further, we found that an overexpression of <em>COX12</em> partially protects mitochondrial respiratory subunit Sdh2 under oxidative and nitrosative stress. Taken together, we provide proof of evidence that cysteine-rich proteins in the IMS dynamically control the cellular redox milieu and actively prevent reactive nitrogen and oxygen species generation.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"13 ","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000195/pdfft?md5=f795c7f807f8d09ef7d402872b728a55&pid=1-s2.0-S2667137924000195-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring oxysterols and protein carbonylation in cervicovaginal secretions as biomarkers for cervical cancer development 将宫颈阴道分泌物中的羟基甾醇和蛋白质羰基化作为宫颈癌发展的生物标记物进行探索
Busra Kose , Serkan Erkanlı , Alper Koçak , Coskun Guzel , Theo Luider , Irundika H.K. Dias , Ahmet Tarik Baykal
{"title":"Exploring oxysterols and protein carbonylation in cervicovaginal secretions as biomarkers for cervical cancer development","authors":"Busra Kose ,&nbsp;Serkan Erkanlı ,&nbsp;Alper Koçak ,&nbsp;Coskun Guzel ,&nbsp;Theo Luider ,&nbsp;Irundika H.K. Dias ,&nbsp;Ahmet Tarik Baykal","doi":"10.1016/j.arres.2024.100111","DOIUrl":"10.1016/j.arres.2024.100111","url":null,"abstract":"<div><p>Cervical cancer, a major global health issue and the fourth most common cancer among women, is strongly linked to Human Papillomavirus (HPV) infection. Emerging evidence indicates that oxidative stress plays a critical role in the carcinogenesis of cervical tissue. This study investigates the relationship between oxidative stress markers—specifically oxysterols, lipid oxidation, and protein carbonylation—and the progression of cervical neoplasia.</p><p>Oxysterols, which are elevated in various inflammatory diseases and cancers, were measured in cervicovaginal fluid samples using LC-MS/MS. The targeted oxysterols included 27-hydroxycholesterol (27-OHC), 7β-hydroxycholesterol (7β-OHC), 7-ketocholesterol (7-KC), and 7α,27-dihydroxycholesterol (7α,27-diOHC). Among these, 7α,27-dihydroxycholesterol was significantly increased in correlation with the severity of neoplastic stages. In parallel, protein carbonylation, an indicator of cellular oxidative stress, was assessed. Results revealed higher levels of protein carbonylation in neoplastic samples compared to non-neoplastic controls. These modifications were further analysed through redox proteomics to identify the specific proteins affected.</p><p>The study demonstrates that elevated lipid oxidation and protein carbonylation in cervicovaginal secretions are linked to the development and progression of cervical cancer. Identifying these biomarkers may improve screening strategies, enabling the identification of individuals at increased risk for cervical neoplasia and guiding timely interventions.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"13 ","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000183/pdfft?md5=9aa608a17eb8ee499fd581b8b30174ce&pid=1-s2.0-S2667137924000183-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin protects against chromium induced oxidative stress-mediated changes in energy metabolism of rat hepatic, cardiac and renal tissues 褪黑素可防止铬诱导的氧化应激介导的大鼠肝、心和肾组织能量代谢变化
Priyanka Ghosh , Madhuri Datta , Romit Majumder , Aindrila Chattopadhyay , Debasish Bandyopadhyay
{"title":"Melatonin protects against chromium induced oxidative stress-mediated changes in energy metabolism of rat hepatic, cardiac and renal tissues","authors":"Priyanka Ghosh ,&nbsp;Madhuri Datta ,&nbsp;Romit Majumder ,&nbsp;Aindrila Chattopadhyay ,&nbsp;Debasish Bandyopadhyay","doi":"10.1016/j.arres.2024.100110","DOIUrl":"10.1016/j.arres.2024.100110","url":null,"abstract":"<div><p>Chromium (Cr) is one of the most prevalent and potentially hazardous heavy metal found in the environment that can cause carcinogenic, genotoxic, and organ-specific irreversible complications. The most severe adverse outcome of Cr on humans involves oxidative stress. Melatonin was evidenced to alleviate such stress with various mechanisms including antioxidative potential and metal chelation. Male Wistar rats were divided into 4 groups and treated for 14 days. The first group (control) was treated with vehicle; the second group was orally administered with melatonin (20 mg/kg b.w./day); the third group was injected with sodium dichromate dihydrate (5 mg/kg bw, s.c. every alternate day); and the fourth group was administered with melatonin, 30 min before Cr administration. The treatment of rats with Cr (VI) was found to affect the metabolic pathways by altering the activities of enzymes possibly through uncompetitively binding with them. The current study also demonstrated that melatonin efficiently preserved the glucose levels and blood lipid profile. Moreover, melatonin was further found to protect the activities of glycolytic, Krebs’ cycle, and ETC enzymes. Further, melatonin pre-treatment reduced the production of <span><math><msubsup><mi>O</mi><mn>2</mn><mrow><mo>.</mo><mo>−</mo></mrow></msubsup></math></span> anion free radical and Ca<sup>2+</sup> overload to protect the mitochondria at the ultrastructural level and reduced DNA damage to some extent. Therefore, this research strongly recommends melatonin as a therapeutic molecule against Cr-induced oxidative stress-mediated liver, heart, and kidney disorders.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"12 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000171/pdfft?md5=725dea399f998c3d9db75e3817f84396&pid=1-s2.0-S2667137924000171-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria-targeted antioxidant, mitoQ protects hepatic tissue from N-nitrosodiethylamine-induced damage by modulating mitochondrial function and redox status 线粒体靶向抗氧化剂 mitoQ 通过调节线粒体功能和氧化还原状态,保护肝组织免受 N-亚硝基二乙胺诱导的损伤
H.S. Qsee , Sachin Shetty , Shounak De , Sanjay Bharati
{"title":"Mitochondria-targeted antioxidant, mitoQ protects hepatic tissue from N-nitrosodiethylamine-induced damage by modulating mitochondrial function and redox status","authors":"H.S. Qsee ,&nbsp;Sachin Shetty ,&nbsp;Shounak De ,&nbsp;Sanjay Bharati","doi":"10.1016/j.arres.2024.100108","DOIUrl":"10.1016/j.arres.2024.100108","url":null,"abstract":"<div><h3>Background</h3><p>Targeting mitochondrial oxidative stress can be a promising strategy for the prevention of hepatocellular carcinoma (HCC). In the current study, we investigated the modulatory effect of mitochondria-targeted antioxidant, mitoQ against N-<em>nitrosodiethylamine</em> (NDEA)-induced hepatic damage in mouse.</p></div><div><h3>Methods</h3><p>BALB/c mice were administered NDEA (10 mg/kg b. w., single dose, intraperitoneally) and the hepatoprotective effect of mitoQ was studied by administering mitoQ (0.125 mg/kg b. w., orally once a week) to the animals. The administration of mitoQ started two weeks prior the NDEA administration. The animals were sacrificed 24 h following NDEA administration after which the blood samples and hepatic tissues were collected. Serum was used for the estimation of liver injury markers and hepatic tissues were analyzed for histopathological changes, antioxidant defense status, mitochondrial functional status, level of mitochondrial reactive oxygen species (mtROS) and mitochondrial lipid peroxidation (mtLPO).</p></div><div><h3>Results</h3><p>MitoQ treatment to the NDEA-challenged group normalized liver injury markers, level of mtROS and mtLPO. MitoQ treatment also improved the status of mitochondrial antioxidant defense system, mitochondrial complex enzymes.</p></div><div><h3>Conclusion</h3><p>Our findings indicate that mito-Q significantly protected against NDEA-induced hepatic damage by modulating mitochondrial function and redox status which may be one of the causes of its purported chemopreventive effect.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"12 ","pages":"Article 100108"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000158/pdfft?md5=33de7d64c50e6f17273a128f14564a1b&pid=1-s2.0-S2667137924000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative stress in patients with congenital heart disease: A systematic review 先天性心脏病患者的氧化应激:系统性综述
Inne Vanreusel , Jan Taeymans , Emeline Van Craenenbroeck , Vincent F.M. Segers , An Van Berendoncks , Jacob J. Briedé , Wendy Hens
{"title":"Oxidative stress in patients with congenital heart disease: A systematic review","authors":"Inne Vanreusel ,&nbsp;Jan Taeymans ,&nbsp;Emeline Van Craenenbroeck ,&nbsp;Vincent F.M. Segers ,&nbsp;An Van Berendoncks ,&nbsp;Jacob J. Briedé ,&nbsp;Wendy Hens","doi":"10.1016/j.arres.2024.100109","DOIUrl":"10.1016/j.arres.2024.100109","url":null,"abstract":"<div><p>Congenital heart disease (CHD) represents a prevalent and diverse set of clinical conditions with significant morbidity and mortality. A recent meta-analysis indicates elevated oxidative stress levels in CHD patients compared to healthy controls. This review aims to elucidate the precise role of oxidative stress and its contributors in CHD. A systematic search of English-language publications on PubMed and the TRIP database yielded 29 reports analyzing oxidative stress markers in peripheral blood samples from pediatric and adult CHD populations. Only studies comparing oxidative stress markers either against controls, within CHD groups, or assessing oxidative stress markers over time evaluating the effect of an antioxidant treatment were included, followed by bias risk assessment. The different markers assessing oxidative stress in CHD were summarized, with scrutiny on potential influencing factors. Although findings are inconclusive overall, factors like cyanosis, genetic predispositions, and metabolic status emerge as important contributors. Additionally, multiple studies suggest a correlation between oxidative stress and CHD severity. Notably, no antioxidant therapies have been evaluated for reducing oxidative stress in CHD patients to date. Further research is imperative for a comprehensive understanding of CHD pathophysiology, particularly the heightened vulnerability of the right ventricle (RV) to heart failure (HF). Such insights could facilitate the development of tailored therapies for RV-related HF and dedicated antioxidant treatments, crucial for enhancing survival rates in this patient population.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"12 ","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266713792400016X/pdfft?md5=b5750b174f3e01dd37d713fb7bf5aee3&pid=1-s2.0-S266713792400016X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catechin ameliorates hepatocellular damage caused by coadministration of isoniazid and rifampicin 儿茶素能减轻异烟肼和利福平联合用药造成的肝细胞损伤
Sonam Sahu , Nimisha Paul , Ankit Ganeshpurkar , Nazneen Dubey , Aditya Ganeshpurkar
{"title":"Catechin ameliorates hepatocellular damage caused by coadministration of isoniazid and rifampicin","authors":"Sonam Sahu ,&nbsp;Nimisha Paul ,&nbsp;Ankit Ganeshpurkar ,&nbsp;Nazneen Dubey ,&nbsp;Aditya Ganeshpurkar","doi":"10.1016/j.arres.2024.100107","DOIUrl":"10.1016/j.arres.2024.100107","url":null,"abstract":"<div><p>It is well known that phyto-constituents possess hepatoprotective properties. The radical scavenging potential of catechin has received substantial research. The goal of the current study was to assess the beneficial effect of Catechin to safeguard rats from liver damage caused by isoniazid and rifampicin. In this investigation, Wistar rats were employed. Administration of isoniazid (100 mg/kg) with rifampicin (100 mg/kg) for 21 days caused hepatocellular injury. The dosages of catechin used were 25, 50, and 100 mg/kg body weight. Blood was drawn at the end of the study, and biochemical tests were performed to determine the enzyme levels. Restoration of AST, ALT, and ALP was brought about by catechin administration (25, 50, and 100 mg/kg body weight). The administration lead to in a restoration of the SOD and catalase levels. The expression of TNF-α, IL-1β, IL-6, MDA, and nitric oxide decreased. The findings prove that catechin had a significant hepatoprotective impact. The hepatoprotective action of catechin might be mediated by the radical scavenging and cytokine suppressing effects.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"12 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000146/pdfft?md5=ed1de63fa0ac231b837c894e6379cd38&pid=1-s2.0-S2667137924000146-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141710775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of serum oxidative stress levels and antioxidant capacity in prediabetes 评估糖尿病前期的血清氧化应激水平和抗氧化能力
Buse Balci , Buket Kin Tekce , Gulali Aktas
{"title":"Evaluation of serum oxidative stress levels and antioxidant capacity in prediabetes","authors":"Buse Balci ,&nbsp;Buket Kin Tekce ,&nbsp;Gulali Aktas","doi":"10.1016/j.arres.2024.100106","DOIUrl":"10.1016/j.arres.2024.100106","url":null,"abstract":"<div><p>Prediabetes is a metabolic disorder marked by blood sugar levels that are elevated than usual but not yet high enough to be classified as type 2 diabetes. It is known that raised oxidative stress and insufficient antioxidant status play a role in the pathogenesis of type 1 and type 2 diabetes. In this study, we aimed to measure total oxidative stress and antioxidant status in prediabetic patients and compare them with healthy volunteers. Subjects with prediabetes according to their HbA1c and blood sugar levels in their routine tests were included in the study. The control group consisted of healthy volunteers who visited our clinics for routine health screening and had no health problems<strong><em>.</em></strong> TAS and TOS levels of the groups were compared. Mean TAS and median TOS values ​​were significantly different among study and control groups (<em>p</em> &lt; 0.001 for both). Blood TOS level was a reliable risk factor of prediabetes, taking into account TAS, weight, triglycerides, and GFR. Higher oxidative stress and lower antioxidant levels were found in prediabetic patients compared to healthy ones. Diabetes development and related complications can be prevented by interventions for these markers in serum.</p></div>","PeriodicalId":72106,"journal":{"name":"Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe","volume":"12 ","pages":"Article 100106"},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667137924000134/pdfft?md5=ee49f38d658cbb481ec81689cdf33f65&pid=1-s2.0-S2667137924000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信