{"title":"Editorial Board: (Advanced Genetics 3/03)","authors":"N. Barzilai, Albert B. Einstein, J. Batley","doi":"10.1002/ggn2.202270032","DOIUrl":"https://doi.org/10.1002/ggn2.202270032","url":null,"abstract":"Nadav Ahituv, University of California, San Francisco, San Francisco, CA USA Nir Barzilai, Albert Einstein College of Medicine, Bronx, NY USA Jacqueline Batley, University of Western Australia, Perth, Australia Touati Benoukraf,Memorial University of Newfoundland, St. John’s, NL, Canada Ewan Birney, EMBL-EBI, Cambridge, UK Catherine A. Brownstein, Boston Children’s Hospital, Boston, MA USA Stephen J. Chanock, National Cancer Institute, Bethesda, MD USA George Church, Harvard Medical School, Boston, MA USA Francesco Cucca, University of Sassari, Sassari, Sardinia, Italy Marcella Devoto, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy Roland Eils, Berlin Institue of Health, Berlin, Germany Jeanette Erdmann, Institute for Cardiogenetics, University of Lubeck, Lubeck, Germany Andrew Feinberg, Johns Hopkins University, Baltimore, MD USA Claudio Franceschi, University of Bologna, Bologna, Italy Paul W. Franks, Lund University, Malmö, Sweden Rachel Freathy, University of Exeter, Exeter, UK Jingyuan Fu, University Medical Center Groningen, Groningen, The Netherlands Eileen Furlong, European Molecular Biology Laboratory, Heidelberg, Germany Tom Gilbert, University of Copenhagen, The Globe Institute, Copenhagen, Denmark Joseph G. Gleeson, University of California, San Diego, Howard Hughes Medical Institute for Genomic Medicine, La Jolla, CA USA Erica Golemis, Fox Chase Cancer Center, Philadelphia, PA USA Sarah Hearne, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico Agnar Helgason, deCODE Genetics, Reykjavik, Iceland Kristina Hettne, Leiden University Libraries, Leiden, The Netherlands Sanwen Huang, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China Youssef Idaghdour, New York University, Abu Dhabi, Abu Dhabi, UAE Rosalind John, Cardiff University, Cardiff, UK Moien Kanaan, Bethlehem University, Bethlehem, Palestine Beat Keller, University of Zurich, Zurich, Switzerland Tuuli Lappalainen, New York Genome Center, Columbia University, New York, NY USA Luis F. Larrondo, Pontifica Universidad Catolica de Chile, Santiago, Chile Suet-Yi Leung, The University of Hong Kong, Hong Kong, China Ryan Lister, The University of Western Australia, Perth, Australia Jianjun Liu, Genome Institute Singapore, Singapore Naomichi Matsumoto, Yokohama City University, Yokohama, Japan Rachel S. Meyer, University of California, Los Angeles, Los Angeles, CA USA Nicola Mulder, University of Cape Town, Cape Town, South Africa Seishi Ogawa, Kyoto University, Kyoto, Japan Guilherme Oliveira, Vale Institute of Technology, Belem, Brazil Qiang Pan-Hammarstrom, Karolinska Institute, Stockholm, Sweden Len A. Pennacchio, Joint Genome Institute, Walnut Creek, CA USA Martin Pera, Jackson Lab, Bar Harbor, ME USA Danielle Posthuma, VU University Amsterdam, Amsterdam, The Netherlands Michael Purugganan, New York University, New York, NY USA Maanasa Raghavan, University of Chic","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85578949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Markus S. Ladewig, Julius O. B. Jacobsen, Alex H. Wagner, Daniel Danis, Baha El Kassaby, Michael Gargano, Tudor Groza, Michael Baudis, Robin Steinhaus, Dominik Seelow, Nikolaos E. Bechrakis, Christopher J. Mungall, Paul N. Schofield, Olivier Elemento, Lindsay Smith, Julie A. McMurry, Monica Munoz-Torres, Melissa A. Haendel, Peter N. Robinson
{"title":"GA4GH Phenopackets: A Practical Introduction","authors":"Markus S. Ladewig, Julius O. B. Jacobsen, Alex H. Wagner, Daniel Danis, Baha El Kassaby, Michael Gargano, Tudor Groza, Michael Baudis, Robin Steinhaus, Dominik Seelow, Nikolaos E. Bechrakis, Christopher J. Mungall, Paul N. Schofield, Olivier Elemento, Lindsay Smith, Julie A. McMurry, Monica Munoz-Torres, Melissa A. Haendel, Peter N. Robinson","doi":"10.1002/ggn2.202200016","DOIUrl":"10.1002/ggn2.202200016","url":null,"abstract":"<p>The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202200016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9372985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sympatric Speciation in Mole Rats and Wild Barley and Their Genome Repeatome Evolution: A Commentary","authors":"Eviatar Nevo, Kexin Li","doi":"10.1002/ggn2.202200009","DOIUrl":"10.1002/ggn2.202200009","url":null,"abstract":"<p>The theories of sympatric speciation (SS) and coding and noncoding (cd and ncd =repeatome) genome function are still contentious. Studies on SS in our two new models, “Evolution Canyon” and “Evolution Plateau”, in Israel, divergent microclimatically and geologically-edaphically, respectively, indicated that in ecologically divergent microsites SS is a common speciation model across life from bacteria to mammals. Genomically, the intergenic ncd repeatome was and is still regarded by many biologists as “selfish,” “junk,” and non-functional. In contrast, it is considered by the encyclopedia of DNA elements discovery as biochemically functional and regulatory, and the transposable elements were considered earlier by Barbara McClintock as “controlling elements” of genes. Remarkably, it is found that repeated elements can statistically identify significantly, the five species of subterranean mole rats of <i>Spalax ehrenbergi</i> superspecies adapted to increasingly arid climatic trend southward in Israel. Moreover, it is first discovered in the SS studies in two distant taxa, subterranean mole rats and wild barley, and later also in spiny mice in Israel and subterranean zokors in China, that the noncoding repeatome is genomically mirroring the image of the protein-coding genome in divergent ecologies. It is shown that this mirroring image is statistically significant both within and between the ecologically divergent taxa supporting the hypothesis that much of the repeatome might be regulatory and selected as the protein-coding genome by the same ecological stresses.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing the Genetics of Lewy Body Disorders with Disease-Modifying Treatments in Mind","authors":"Gilberto Levy, Bruce Levin, Eliasz Engelhardt","doi":"10.1002/ggn2.202200011","DOIUrl":"10.1002/ggn2.202200011","url":null,"abstract":"<p>In this article, a caveat for advancing the genetics of Lewy body disorders is raised, given the nosological controversy about whether to consider dementia with Lewy bodies (DLB) and Parkinson's disease (PD) as one entity or two separate entities. Using the framework of the sufficient and component causes model of causation, as further developed into an evolution-based model of causation, it is proposed that a disease of complex etiology is defined as having a relatively high degree of sharing of the component causes (a genetic or environmental factor), that is, a low degree of heterogeneity of the sufficient causes. Based on this definition, only if the sharing of component causes within each of two diseases is similar to their combined sharing can lumping be warranted. However, it is not known whether the separate and combined sharing are similar before conducting the etiologic studies. This means that lumping DLB and PD can be counterproductive as it can decrease the ability to detect component causes despite the potential benefit of conducting studies with larger sample sizes. In turn, this is relevant to the development of disease-modifying treatments, because non-overlapping causal genetic factors may result in distinct pathogenetic pathways providing promising targets for interventions.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuliang Feng, Ping Wang, Liuyang Cai, Meixiao Zhan, Fan He, Jiahui Wang, Yong Li, Eva Gega, Wei Zhang, Wei Zhao, Yongjie Xin, Xudong Chen, Yijun Ruan, Ligong Lu
{"title":"3D-Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma","authors":"Yuliang Feng, Ping Wang, Liuyang Cai, Meixiao Zhan, Fan He, Jiahui Wang, Yong Li, Eva Gega, Wei Zhang, Wei Zhao, Yongjie Xin, Xudong Chen, Yijun Ruan, Ligong Lu","doi":"10.1002/ggn2.202100010","DOIUrl":"10.1002/ggn2.202100010","url":null,"abstract":"<p>The fundamental cause of transcription dysregulation in hepatocellular carcinoma (HCC) remains elusive. To investigate the underlying mechanisms, comprehensive 3D-epigenomic analyses are performed in cellular models of THLE2 (a normal hepatocytes cell line) and HepG2 (a hepatocellular carcinoma cell line) using integrative approaches for chromatin topology, genomic and epigenomic variation, and transcriptional output. Comparing the 3D-epigenomes in THLE2 and HepG2 reveal that most HCC-associated genes are organized in complex chromatin interactions mediated by RNA polymerase II (RNAPII). Incorporation of genome-wide association studies (GWAS) data enables the identification of non-coding genetic variants that are enriched in distal enhancers connecting to the promoters of HCC-associated genes via long-range chromatin interactions, highlighting their functional roles. Interestingly, CTCF binding and looping proximal to HCC-associated genes appear to form chromatin architectures that overarch RNAPII-mediated chromatin interactions. It is further demonstrated that epigenetic variants by DNA hypomethylation at a subset of CTCF motifs proximal to HCC-associated genes can modify chromatin topological configuration, which in turn alter RNAPII-mediated chromatin interactions and lead to dysregulation of transcription. Together, the 3D-epigenomic analyses provide novel insights of multifaceted interplays involving genetics, epigenetics, and chromatin topology in HCC cells.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9157269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-Cell Transcriptome Identifies Drug-Resistance Signature and Immunosuppressive Microenvironment in Metastatic Small Cell Lung Cancer (Advanced Genetics 2/03)","authors":"Jing Zhang, Haiping Zhang, Lele Zhang, Dianke Li, Mengfan Qi, Liping Zhang, Huansha Yu, Di Wang, Gening Jiang, Xujun Wang, Xianmin Zhu, Peng Zhang","doi":"10.1002/ggn2.202270021","DOIUrl":"10.1002/ggn2.202270021","url":null,"abstract":"<p><b>Single-Cell RNA Sequencing</b></p><p>This cover illustrates the work of Xujun Wang, Xianmin Zhu, Peng Zhang, and co-workers in article number 2100060 which reveals the drug-resistance signature and immunosuppressive microenvironment in small cell lung cancer (SCLC) by single-cell RNA-sequencing. “Wu Song Fought the Tiger” comes from the famous Chinese novel: Outlaws of the Marsh. In the cover, the warrior Wu Song stands for the doctors and researchers. The tiger bearing “SCLC” on its face is dangerous for its sharp teeth and claws (early metastasis and drug resistance) and the surrounding water bubbles (immune infiltration). In addition, 2022 is the Year of the Tiger.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744528/pdf/GGN2-3-2270021.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10501710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masthead: (Advanced Genetics 2/03)","authors":"","doi":"10.1002/ggn2.202270022","DOIUrl":"10.1002/ggn2.202270022","url":null,"abstract":"Nadav Ahituv, University of California, San Francisco, San Francisco, CA USA Nir Barzilai, Albert Einstein College of Medicine, Bronx, NY USA Jacqueline Batley, University of Western Australia, Perth, Australia Touati Benoukraf,Memorial University of Newfoundland, St. John’s, NL, Canada Ewan Birney, EMBL-EBI, Cambridge, UK Catherine A. Brownstein, Boston Children’s Hospital, Boston, MA USA Stephen J. Chanock, National Cancer Institute, Bethesda, MD USA George Church, Harvard Medical School, Boston, MA USA Francesco Cucca, University of Sassari, Sassari, Sardinia, Italy Marcella Devoto, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA USA Roland Eils, Berlin Institue of Health, Berlin, Germany Jeanette Erdmann, Institute for Cardiogenetics, University of Lubeck, Lubeck, Germany Andrew Feinberg, Johns Hopkins University, Baltimore, MD USA Claudio Franceschi, University of Bologna, Bologna, Italy Paul W. Franks, Lund University, Malmö, Sweden Rachel Freathy, University of Exeter, Exeter, UK Jingyuan Fu, University Medical Center Groningen, Groningen, The Netherlands Eileen Furlong, European Molecular Biology Laboratory, Heidelberg, Germany Tom Gilbert, University of Copenhagen, The Globe Institute, Copenhagen, Denmark Joseph G. Gleeson, University of California, San Diego, Howard Hughes Medical Institute for Genomic Medicine, La Jolla, CA USA Erica Golemis, Fox Chase Cancer Center, Philadelphia, PA USA Sarah Hearne, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico Agnar Helgason, deCODE Genetics, Reykjavik, Iceland Kristina Hettne, Leiden University Libraries, Leiden, The Netherlands John Hickey, The Roslin Institute, Edinburgh, UK Sanwen Huang, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China Youssef Idaghdour, New York University, Abu Dhabi, Abu Dhabi, UAE Rosalind John, Cardiff University, Cardiff, UK Astrid Junker, Leibniz Institute of Plant Genetics, Crop Plant Research (IPK) Gatersleben, Stadt Seeland, OT Gatersleben, Germany Moien Kanaan, Bethlehem University, Bethlehem, Palestine Beat Keller, University of Zurich, Zurich, Switzerland Tuuli Lappalainen, New York Genome Center, Columbia University, New York, NY USA Luis F. Larrondo, Pontifica Universidad Catolica de Chile, Santiago, Chile Suet-Yi Leung, The University of Hong Kong, Hong Kong, China Ryan Lister, The University of Western Australia, Perth, Australia Jianjun Liu, Genome Institute Singapore, Singapore Naomichi Matsumoto, Yokohama City University, Yokohama, Japan Rachel S. Meyer, University of California, Los Angeles, Los Angeles, CA USA Nicola Mulder, University of Cape Town, Cape Town, South Africa Huck-Hui Ng, Genome Institute of Singapore, Singapore John Novembre, University of Chicago, Chicago, IL USA Seishi Ogawa, Kyoto University, Kyoto, Japan Guilherme Oliveira, Vale Institute of Technology, Belem, Brazil Qiang Pan-Hammarstrom, Karolinska Institute, Stockholm, Sw","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202270022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73138973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Marcos, Melanie Parejo, Andone Estonba, Antton Alberdi
{"title":"Recovering High-Quality Host Genomes from Gut Metagenomic Data through Genotype Imputation","authors":"Sofia Marcos, Melanie Parejo, Andone Estonba, Antton Alberdi","doi":"10.1002/ggn2.202100065","DOIUrl":"10.1002/ggn2.202100065","url":null,"abstract":"<p>Metagenomic datasets of host-associated microbial communities often contain host DNA that is usually discarded because the amount of data is too low for accurate host genetic analyses. However, genotype imputation can be employed to reconstruct host genotypes if a reference panel is available. Here, the performance of a two-step strategy is tested to impute genotypes from four types of reference panels built using different strategies to low-depth host genome data (≈2× coverage) recovered from intestinal samples of two chicken genetic lines. First, imputation accuracy is evaluated in 12 samples for which both low- and high-depth sequencing data are available, obtaining high imputation accuracies for all tested panels (>0.90). Second, the impact of reference panel choice in population genetics statistics on 100 chickens is assessed, all four panels yielding comparable results. In light of the observations, the feasibility and application of the applied imputation strategy are discussed for different species with regard to the host DNA proportion, genomic diversity, and availability of a reference panel. This method enables leveraging insofar discarded host DNA to get insights into the genetic structure of host populations, and in doing so, facilitates the implementation of hologenomic approaches that jointly analyze host and microbial genomic data.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10506891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genotype Value Decomposition: Simple Methods for the Computation of Kernel Statistics","authors":"Kazuharu Misawa","doi":"10.1002/ggn2.202100066","DOIUrl":"10.1002/ggn2.202100066","url":null,"abstract":"<p>Recent advances in sequencing technologies enable genome-wide analyses for thousands of individuals. The sequential kernel association test (SKAT) is a widely used method to test for associations between a phenotype and a set of rare variants. As the sample size of human genetics studies increases, the computational time required to calculate a kernel is becoming more and more problematic. In this study, a new method to obtain kernel statistics without calculating a kernel matrix is proposed. A simple method for the computation of two kernel statistics, namely, a kernel statistic based on a genetic relationship matrix (GRM) and one based on an identity by state (IBS) matrix, are proposed. By using this method, calculation of the kernel statistics can be conducted using vector calculation without matrix calculation. The proposed method enables one to conduct SKAT for large samples of human genetics.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10508716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thorsten Horn, Kalin D. Narov, Kristen A. Panfilio
{"title":"Persistent Parental RNAi in the Beetle Tribolium castaneum Involves Maternal Transmission of Long Double-Stranded RNA","authors":"Thorsten Horn, Kalin D. Narov, Kristen A. Panfilio","doi":"10.1002/ggn2.202100064","DOIUrl":"https://doi.org/10.1002/ggn2.202100064","url":null,"abstract":"<p>Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific knockdown. Yet in insects its efficacy varies between species, and how the systemic response is transmitted from mother to offspring remains elusive. Using the beetle <i>Tribolium castaneum</i>, an RT-qPCR strategy to distinguish the presence of double-stranded RNA (dsRNA) from endogenous mRNA is reported. It is found that injected dsRNA is directly transmitted into the egg and persists throughout embryogenesis. Despite this depletion of dsRNA from the mother, it is shown that strong pRNAi can persist for months before waning at strain-specific rates. In seeking the receptor proteins for cellular uptake of long dsRNA into the egg, a phylogenomics profiling approach of candidate proteins is also presented. A visualization strategy based on taxonomically hierarchical assessment of orthology clustering data to rapidly assess gene age and copy number changes, refined by sequence-based evidence, is demonstrated. Repeated losses of SID-1-like channel proteins in the arthropods, including wholesale loss in the Heteroptera (true bugs), which are nonetheless highly sensitive to pRNAi, are thereby documented. Overall, practical considerations for insect pRNAi against a backdrop of outstanding questions on the molecular mechanism of dsRNA transmission for long-term, systemic knockdown are elucidated.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202100064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91854181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}