M. Miranzadeh, F. Afshari, Behnoosh Khataei, M. Kassaee
{"title":"Adsorption and Photocatalytic Removal of Arsenic from Water by a Porous and Magnetic Nanocomposite: Ag/TiO2/Fe3O4@GO","authors":"M. Miranzadeh, F. Afshari, Behnoosh Khataei, M. Kassaee","doi":"10.33945/sami/ajca.2020.4.3","DOIUrl":"https://doi.org/10.33945/sami/ajca.2020.4.3","url":null,"abstract":"As (III) regularly requires oxidation to As (V), before it can be removed from water. Here, we reported photocatalytic removal of As (III) as well as adsorption of As (III) and As (V) using a novel, porous magnetic Ag/TiO2/Fe3O4@GO nanocomposite which was characterized via FT-IR, XRD, SEM, and TEM. A mathematical model (the central composite design) was used to estimate the relationship between the observed adsorption and our set of variables including initial concentration of arsenic ions, adsorbent dosage, pH, and the contact time. An optimum adsorption capacity of about 91% was observed for As (III) using 20 mg adsorbent with 24 ppm initial concentration of As (III), at pH = 5, within 90 min, and room temperature. Likewise, an optimum adsorption capacity of about 87% was observed for As (V) using 11 mg adsorbent with 17 ppm initial concentration of As (V), at pH = 3, within 30 min, and room temperature. The electrostatic factors between surface charge of nanocomposite and arsenic species were used to explain adsorption behavior of As (III) and As (V) at different conditions. The Langmuir isotherm equations best interpreted the nature of adsorption of As (III) and A (V). It was found during phocatalytic process maximum R% was about 63% for As (III) using 40 mg photocatalyst.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74297976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hamil, K. M. Khalifa, Arabya A. A. Almutaleb, Mariam Qasim Nouradean
{"title":"Synthesis, Characterization and Antibacterial Activity Studies of Some Transition Metal Chelates of Mn(II), Ni(II) and Cu(II) with Schiff Base Derived from Diacetylmonoxime with O-phenylenediamine","authors":"A. Hamil, K. M. Khalifa, Arabya A. A. Almutaleb, Mariam Qasim Nouradean","doi":"10.33945/SAMI/AJCA.2020.4.13","DOIUrl":"https://doi.org/10.33945/SAMI/AJCA.2020.4.13","url":null,"abstract":"In this study, the transition metal chelates of Mn(II), Ni(II) and Cu(II) with Schiff base were synthesized and characterized. The elemental analysis data showed that, the isolated chelates are in 1:1 [M:L] ratio. The molar conductance values revealed that the chelates are none electrolyte in nature. The results of magnetic moment measurements demonstrated that, the chelates of Mn(II) and Cu(II) have unpaired electrons and chelates of Ni(II) is diamagnetic. The infrared spectral data displayed the main coordination sites of (2E, 3E)-3-((2-aminophenyl)imino)butan-2-one oxime towards Mn(II), Ni(II) and Cu(II) ions. The electronic spectrum results of the Schiff base ligand and its chelates suggest that the Mn(II) and Cu(II) chelates have octahedral structure and Ni(II) chelate is square planar.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84036516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Hassan, Adil Munir, Asad Bashir, F. Ali, Rana Muhammad Shahid
{"title":"Mitigation of Cu(II) from Aqueous Solution by Using Sandal Santalum Album Distillation Biomass","authors":"Q. Hassan, Adil Munir, Asad Bashir, F. Ali, Rana Muhammad Shahid","doi":"10.33945/sami/ajca.2020.4.9","DOIUrl":"https://doi.org/10.33945/sami/ajca.2020.4.9","url":null,"abstract":"In this study, mitigation of Cu(II) from aqueous solutions was evaluated using the sandal Santalum Album as biosorbent. The removal capacity of the Cu(II) was studied in batch experiments including such as initial metal concentration (25-400 mg/L), biosorbent dose (0.05-0.2 g), effects of contact time (0-1440 min), kinetics and pre-treatment of the biosorbent. The maximum removal of Cu(II) was obtained at the optimum pH of 5. The maximum equilibrium uptake for Cu(II) was Ba(OH)2-SA(248.8 mg/g-1) at 400 ppm. Kinetics studies explained that, mitigation of the Cu(II) was very fast from 0 to 120 min and achieved equilibrium at 240 min. The equilibrium was well explained by Frendlich isotherm. Kinetics was well fitted to pseudo second order equation with high R2 values.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91232709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unesco Chakma, A. Kumer, Kamal Bikash Chakma, Md. Tawhidul Islam, Debashis Howlader
{"title":"Electronics Structure and Optical Properties of Ag2BiO3, (Ag2)0.88Fe0.12BiO3: A First Principle Approach","authors":"Unesco Chakma, A. Kumer, Kamal Bikash Chakma, Md. Tawhidul Islam, Debashis Howlader","doi":"10.33945/SAMI/AJCA.2020.4.15","DOIUrl":"https://doi.org/10.33945/SAMI/AJCA.2020.4.15","url":null,"abstract":"Electronic band structures, the total density of state, partial density of state and optical properties were investigated using first principle method for Ag2BiO3 via Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0). The band gap was found to be 0.490 eV which is supported for good semiconductor. The density of state and partial density of state were simulated for evaluating the nature of 5s, 4d for Ag, 6s, 4f, 5d, 6p for Bi and 2s, 2p for oxygen atom for Ag2BiO3 orbital travelling from the maximum valance band to minimum conduction band to explain the transition of electron due to hybridization. The optical properties including, absorption, reflection, refractive index, conductivity, dielectric function and loss function were calculated which can account for the superior absorption of the visible light. The key point of this research study was to determine the activity on electronics structure and optical properties for Fe doped by 12%. Regarding the band gap and optical properties, Ag2Bi0.88Fe0.12O3 can give more conductivity compared with that than of the Ag2BiO3,showing as a superconductor.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85766744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Sajjadnejad, Seyed Mohammad Haghshenas, Vahid Tavakoli Targhi, H. Zahmatkesh, M. Naeimi
{"title":"Utilization of Sustainable Energies for Purification of Water","authors":"M. Sajjadnejad, Seyed Mohammad Haghshenas, Vahid Tavakoli Targhi, H. Zahmatkesh, M. Naeimi","doi":"10.33945/SAMI/AJCA.2020.4.11","DOIUrl":"https://doi.org/10.33945/SAMI/AJCA.2020.4.11","url":null,"abstract":"Water and energy are the most important topics on the environment and sustainable energy development agenda. The social and economic health of the modern world depends on sustainable supply of both energy and water. Many areas worldwide suffering from fresh water shortage are becoming increasingly dependent on purification as a highly reliable and non-conventional source of fresh water. Therefore, purification market has greatly expanded in recent decades and expected to continue in the coming years. The integration of renewable energy resources in purification and water purification has become increasingly attractive. This is justified by the fact that areas of fresh water shortages have plenty of solar energy and these technologies can be used due to their low operating and maintenance costs. This review paper discusses the systems that can be used to harness renewable energy sources including, solar collectors, solar ponds, photovoltaics, wind energy and geothermal energy and finally a discussion and conclusion about some distinguished features of each process. Merging of these renewable energy sources with conventional sources has led to optimize the performance of purification plant, less maintenance requirement and reduction in overall cost. It was found that, to choose the best renewable energy source for a purification plant in a particular area, important determinative factors should be considered such as water salinity, area remoteness, plant size, technical infrastructure of the plant, capacity factor, energy consumption and capital cost of the equipment.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84561964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Medicinal Effects of Isoxazole Ring Isosteres on Zonisamide for Autism Treatment by Binding to Potassium Voltage-Gated Channel Subfamily D Member 2 (Kv 4.2)","authors":"M. Nabati, Vida Bodaghi-Namileh","doi":"10.33945/SAMI/AJCA.2020.4.8","DOIUrl":"https://doi.org/10.33945/SAMI/AJCA.2020.4.8","url":null,"abstract":"The present research study discusses discovery of the novel drugs based on Zonisamide (FDA-approved drug) to treat the autism disease. We designed novel compounds by changing the pyrazole ring of the molecular structure with its isosteric rings. The main goal of the present study is evaluation of isosterism effect on Zonisamide compound. The studied pyrazole isosters are isothiazole, [c] azaphosphole, [d] azaphosphole, oxaphosphole, thiaphosphole and diphosphole. First, all designed molecular structures were optimized using density functional theory (DFT) computational method by B3LYP/6-311++G(d,p) basis set of theory. All the computations were performed in isolated form at room temperature. Then, making complex of all optimized molecular structures with A-type potassium voltage gated subfamily d member 2 (Kv 4.2) was studied. The ligand-receptor complexes energy data showed all designed molecules except (1H-indazol-3-yl)methanesulfonamide interct with channel weakly. The residues Phe 75, Asp 86, Phe 84, and Phe 74 played main role in making complex with (1H-indazol-3-yl)methanesulfonamide. However, the ADME and biological properties of the designed molecules were carried out using swissADME and FAF-Drugs4 web tools. Based on the ligand-channel complexes docking data and biochemical properties of the compounds, the pyrazole pentet ring is a suitable isostere for isoxazole ring in Zonisamide.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74825323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Apparav Wale, S. A. Mule, A. Dhage, K. Mulani, S. Ponrathnam, N. Chavan
{"title":"Thermotropic Liquid Crystalline Polyesters Using Aromatic Rigid Diols, Unsaturated Fumaric Acid and Flexible Sebacic Acid","authors":"Apparav Wale, S. A. Mule, A. Dhage, K. Mulani, S. Ponrathnam, N. Chavan","doi":"10.33945/SAMI/AJCA.2020.4.12","DOIUrl":"https://doi.org/10.33945/SAMI/AJCA.2020.4.12","url":null,"abstract":"In the present study, seven different series of thermotropic liquid crystalline polyesters (TLCPs) containing unsaturated fumaroyl chloride and flexible sebacoyl chloride were synthesized using the interfacial polymerization methodology. Homopolyesters prepared with saturated flexible spacer such as sebacoyl chloride were mesomorphic whereas homopolyesters synthesized using unsaturated aliphatic spacer such as fumaroyl chloride that was non-mesomorphic. Aromatic diad and triad based mesogenic diols were selected as rigid moiety for liquid crystalline phase formation. Within each series, copolyesters were synthesized by varying relative mole ratio of the above two aliphatic diacid chlorides. Most of the liquid crystalline polyesters showed solubility in phenol:tetrachloroethane (60:40) at 40 ᵒC.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78109616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heavy Metal Release from Industrial Solid Wastes (Case Study: Khazar Steel Smelting Plant)","authors":"Zahra Zamiraei, M. Panahandeh, Habib Fathidokht","doi":"10.33945/sami/ajca.2020.3.11","DOIUrl":"https://doi.org/10.33945/sami/ajca.2020.3.11","url":null,"abstract":"Information about the heavy metals release from industrial solid wastes is important for more reliable management of their environmental hazards. This study was conducted to investigate the effect of tissue of solid waste on the release of heavy metals from the steel smelting plant. After the investigation at the Khazar steel smelting (KSS) plant in Guilan province, its waste type, source, quantity and quality were characterized. The major wastes generated from the KSS plant were characterized to be the slag, furnace dust, and spent refractories. KSS solid wastes contained heavy metals in varying amounts, with the ranges of 1500-2200, 80–114, 6172-11100, 88-82, 48-29, 56-60, 4-14, 144-370 and 0.9-1.0 mg/kg−1 for Mn, Cu, Zn, Ni, Cr, Co, Cd, Pb and As, respectively. The concentration of the iron was high in these wastes (109900-672000 mg/kg−1). The results confirmed the high concentration of heavy metals except for Arsenic. The TCLP results of the KSS dust and slag showed the almost all the heavy metals concentrations by the leaching test were lower than the detection limits except Fe (524.5-187.6 mg/kg-1) and Mn (14-10.10 mg/kg-1). According to the results, all the wastes generated by the KSS plant were reusable and recyclable.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88982861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Pure and Binary Azeotropic Fluids on Heat Pipes Performance","authors":"Khalifa Bogarrasa, Moussa Khlifa","doi":"10.33945/SAMI/AJCA.2020.5.2","DOIUrl":"https://doi.org/10.33945/SAMI/AJCA.2020.5.2","url":null,"abstract":"Azeotropic fluids are considered to be a beneficial discovery used in various operations involving mechanical performance of machines. It is the thermodynamic property of the fluids to absorb heat and dissipate it. For instance, the addition of alcohols in water may increase the performance of these fluids. The objective of this work was to conduct a comparative study on heat pipe performance with different working fluids. The working fluids chosen for the study were water and pure ethanol. The concentrations of ethanol in water differed between 25% and 95%. The material of heat pipes was copper with a sintered wicks structure. The experimental results revealed that, the evaporator temperature for water was lower than that of the ethanol and its mixture at high heating input. However, the heat transported by the heat pipes of water was considerably greater than that of the heat pipes of ethanol and binary fluids as working fluids.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89651097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}