Electronics Structure and Optical Properties of Ag2BiO3, (Ag2)0.88Fe0.12BiO3: A First Principle Approach

Unesco Chakma, A. Kumer, Kamal Bikash Chakma, Md. Tawhidul Islam, Debashis Howlader
{"title":"Electronics Structure and Optical Properties of Ag2BiO3, (Ag2)0.88Fe0.12BiO3: A First Principle Approach","authors":"Unesco Chakma, A. Kumer, Kamal Bikash Chakma, Md. Tawhidul Islam, Debashis Howlader","doi":"10.33945/SAMI/AJCA.2020.4.15","DOIUrl":null,"url":null,"abstract":"Electronic band structures, the total density of state, partial density of state and optical properties were investigated using first principle method for Ag2BiO3 via Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0). The band gap was found to be 0.490 eV which is supported for good semiconductor. The density of state and partial density of state were simulated for evaluating the nature of 5s, 4d for Ag, 6s, 4f, 5d, 6p for Bi and 2s, 2p for oxygen atom for Ag2BiO3 orbital travelling from the maximum valance band to minimum conduction band to explain the transition of electron due to hybridization. The optical properties including, absorption, reflection, refractive index, conductivity, dielectric function and loss function were calculated which can account for the superior absorption of the visible light. The key point of this research study was to determine the activity on electronics structure and optical properties for Fe doped by 12%. Regarding the band gap and optical properties, Ag2Bi0.88Fe0.12O3 can give more conductivity compared with that than of the Ag2BiO3,showing as a superconductor.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Journal of Chemistry-Section A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/SAMI/AJCA.2020.4.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Electronic band structures, the total density of state, partial density of state and optical properties were investigated using first principle method for Ag2BiO3 via Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0). The band gap was found to be 0.490 eV which is supported for good semiconductor. The density of state and partial density of state were simulated for evaluating the nature of 5s, 4d for Ag, 6s, 4f, 5d, 6p for Bi and 2s, 2p for oxygen atom for Ag2BiO3 orbital travelling from the maximum valance band to minimum conduction band to explain the transition of electron due to hybridization. The optical properties including, absorption, reflection, refractive index, conductivity, dielectric function and loss function were calculated which can account for the superior absorption of the visible light. The key point of this research study was to determine the activity on electronics structure and optical properties for Fe doped by 12%. Regarding the band gap and optical properties, Ag2Bi0.88Fe0.12O3 can give more conductivity compared with that than of the Ag2BiO3,showing as a superconductor.
Ag2BiO3, (Ag2)0.88Fe0.12BiO3的电子结构和光学性质:第一性原理方法
利用基于PBE0的广义梯度近似(GGA)第一性原理方法研究了Ag2BiO3的电子能带结构、态总密度、态偏密度和光学性质。发现带隙为0.490 eV,支持良好的半导体。通过模拟态密度和偏态密度,评价了Ag的5s、4d、Bi的6s、4f、5d、6p和Ag2BiO3轨道从最大价带向最小导带移动的氧原子的2s、2p的性质,解释了杂化引起的电子跃迁。计算了吸收、反射、折射率、电导率、介电函数和损耗函数等光学性质,说明了该材料对可见光的良好吸收。本研究的重点是确定掺铁12%对电子结构和光学性质的活性。在带隙和光性能方面,ag2bi0.88 fe0.120 o3比ag2bi3具有更高的导电性,表现为超导体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信