Sanaz Soleymani Eil Bakhtiari , Islam Shyha , Dongyang Sun , Mohammadreza Nofar , Reza Salehiyan
{"title":"Re-evaluating bioplastic blend wastes through mechanical recycling and chemical modification","authors":"Sanaz Soleymani Eil Bakhtiari , Islam Shyha , Dongyang Sun , Mohammadreza Nofar , Reza Salehiyan","doi":"10.1016/j.aiepr.2025.03.001","DOIUrl":"10.1016/j.aiepr.2025.03.001","url":null,"abstract":"<div><div>The escalating environmental challenges posed by conventional plastics have amplified the importance of biodegradable polymers as sustainable alternatives. However, addressing their recyclability and reprocessing is critical to enhancing their environmental and economic viability. This review delves into the multiple reprocessing of biodegradable polymer blends, focusing on mechanical recycling's effects on their structure, properties, and performance. Unlike single polymers, blends offer tailored properties by combining the strengths of individual components, making them more suitable for diverse applications. However, their complex morphologies and phase interactions demand unique strategies for effective recycling.</div><div>Key findings highlight that polymer blends, such as PLA/PHB and PLA/PBAT, exhibit greater resilience to repeated processing compared to their pure counterparts, owing to enhanced intermolecular interactions and progressive crystallinity. Compatibilizers, including chain extenders like Joncryl®, play a pivotal role in mitigating degradation by improving phase adhesion and maintaining mechanical and thermal properties. Rheological analyses reveal the critical interplay between phase morphology and processing conditions, emphasizing the importance of tailoring blend compositions and additives for optimal recyclability.</div><div>This review sets itself apart by providing the first comprehensive examination of the effects of multiple mechanical reprocessing cycles specifically on biodegradable polymer blends, filling a significant gap in the literature. By addressing current challenges, it offers a roadmap for advancing biodegradable materials toward a circular economy.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 289-321"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in lead-free flexible piezoelectric materials for energy and evolving applications","authors":"Jacem Zidani , Latifa Tajounte , Abdellah Benzaouak , Noureddine Touach , Adam Duong , Moneim Zannen , Abdelilah Lahmar","doi":"10.1016/j.aiepr.2025.04.001","DOIUrl":"10.1016/j.aiepr.2025.04.001","url":null,"abstract":"<div><div>The review highlights the advancements in flexible lead-free piezoelectric materials, emphasizing their potential for energy harvesting and sustainable energy. Although normal piezoelectric materials such as lead zirconate titanate (PZT) have great efficiency, their lead content causes environmental issues. This research focuses on replacement materials like biodegradable polymers and bismuth sodium titanate (BNT), which not only show interesting piezoelectric capabilities but also have advantages in terms of flexibility and biocompatibility. In order to increase piezoelectric performance while maintaining flexibility, it is advised to include inorganic fillers into polymer matrices, therefore qualifying these materials for usage in biomedical and wearable electronics applications. The evaluation also covers the issues resulting from the great usage of these resources, including e-waste and the need of sustainable solutions. The general message of the research underlines the need of developing new piezoelectric materials able to effectively gather mechanical energy from different sources, therefore promoting self-sustaining systems and reducing reliance on traditional power sources. The review also underlines how lead-free piezoelectric materials can boost power density and chemical oxygen demand (COD) removal rates in microbial fuel cells (MFCs), therefore promoting sustainable energy solutions that turn organic waste into bioelectricity.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 341-386"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yakubu Adekunle Alli , Abayomi Bamisaye , Onome Ejeromedoghene , Olusegun Oluwaseun Jimoh , Samuel Oluwadadepo Oni , Gerald Chekwube Ezeamii , Chukwurimazu Ozoemezim , Adeniyi Sunday Ogunlaja , Suraya Abdul Rashid , Baljinder K. Kandola
{"title":"Recent advancement in MXene-based nanomaterials for flame retardant polymers and composites","authors":"Yakubu Adekunle Alli , Abayomi Bamisaye , Onome Ejeromedoghene , Olusegun Oluwaseun Jimoh , Samuel Oluwadadepo Oni , Gerald Chekwube Ezeamii , Chukwurimazu Ozoemezim , Adeniyi Sunday Ogunlaja , Suraya Abdul Rashid , Baljinder K. Kandola","doi":"10.1016/j.aiepr.2025.03.002","DOIUrl":"10.1016/j.aiepr.2025.03.002","url":null,"abstract":"<div><div>This review explores the advancements in MXene-based nanomaterials as flame-retardant additives for polymers and composites, driven by increasing fire safety demands across industries. It highlights the critical role of flame-retardant materials in mitigating fire hazards in structures, electronics, transportation, and textiles, emphasizing the need for innovative solutions due to stricter safety regulations. MXenes, a class of two-dimensional nanomaterials with unique structural properties such as high surface area, tunable composition, and superior thermal stability, are presented as promising candidates. The review discusses various synthesis and incorporation techniques for MXenes in polymer matrices, showcasing improvements in flame retardancy, mechanical properties, and thermal stability. Additionally, it emphasizes the multifunctionality of MXenes, which offer conductivity, electromagnetic shielding, and mechanical reinforcement alongside flame suppression. In conclusion, the review underscores MXenes' potential to address challenges in flame-retardant materials, advocating for further research to optimize their applications and explore synergies with other agents to enhance safety and sustainability in engineering materials.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 322-340"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zihan Jia , Minglong Li , Bo Wang , Dongsheng Li , Peng Guo , Mingfu Lyu , Zhiyong Wei , Lin Sang
{"title":"Rapid prediction of poly(butylene adipate-co-terephthalate)/poly(glycolic acid) (PBAT/PGA) agricultural films based on UV-accelerated aging tests with applicability to the environment","authors":"Zihan Jia , Minglong Li , Bo Wang , Dongsheng Li , Peng Guo , Mingfu Lyu , Zhiyong Wei , Lin Sang","doi":"10.1016/j.aiepr.2025.06.002","DOIUrl":"10.1016/j.aiepr.2025.06.002","url":null,"abstract":"<div><div>Biodegradable plastic mulches (BPMs) possess great possibility as alternative materials for traditional non-degradable agricultural films. However, research on the degradation behaviors of biodegradable films remains relatively nascent, which is a crucial determinant in applications. Ultraviolet accelerated aging method offers an effective approach to simulate the outdoor or field degradation in a shortened period. In this research, poly(butylene adipate-co-terephthalate)/poly(glycolic acid) (PBAT/PGA) films were prepared and subjected to UV-accelerated degradation (UAD) and natural environmental degradation (NED). The variation of performance parameters including haze, transmittance, tensile strength, elongation at break and melting temperature were monitored at varying degradation intervals. Due to the UV-accelerated aging experimental conditions were well matched with natural environmental factors, the data derived from UAD and NED were highly correlated, indicating the feasibility of predicting film properties based on the UAD test. Random forest algorithm displayed superior stability and high accuracy in constructing degradation prediction model, achieving <em>R</em><sup><em>2</em></sup> of 0.984 and 0.979 for training and test sets, respectively. Equations derived from this model demonstrated the mapping between NED days and UAD days, which facilitated a rapid evaluation of film out-door performance by indoor UV-accelerated aging tests. Machine learning provides a novel and efficient approach for constructing degradation prediction models, which can enhance the adoption of biodegradable films and thus contribute to addressing the plastic pollution problems in agriculture.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 454-467"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biodegradation by a novel thermophilic Actinomadura sp. SCN-SB with microbial upcycling potential","authors":"Natthaphat Phothong , Siritouch Bhamarasuta , Shiho Morikane , Hiroya Tomita , Kohsuke Honda , Suchada Chanprateep Napathorn","doi":"10.1016/j.aiepr.2025.05.002","DOIUrl":"10.1016/j.aiepr.2025.05.002","url":null,"abstract":"<div><div>Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable and biocompatible biopolymer with promising applications in food packaging and biomedical fields. However, its degradation under uncontrolled composting conditions remains relatively slow. To address this limitation, this study aimed to isolate and characterize thermophilic bacteria capable of producing extracellular hydrolytic enzymes involved in PHBV degradation. A total of 131 bacterial strains were isolated from soil samples, among which isolate 93 showed the highest PHBV-degrading activity on agar plates. Based on 16S rRNA gene sequencing, isolate 93 shared 98.19 % similarity with <em>Actinomadura adrarensis</em> ACD12. Whole-genome analysis revealed closer relatedness to <em>A. vinacea</em> JCM 3325, with digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANIb) values of 25.40 % and 80.07 %, respectively, suggesting that isolate 93 is a novel species, designated <em>Actinomadura</em> sp. SCN-SB. Gene annotation confirmed the presence of extracellular short-chain-length PHA (scl-PHA) depolymerase genes. Functional assays demonstrated a maximum clear zone of 28.0 ± 2.9 mm on PHBV agar plates at 50 °C and a 50.4 ± 4.7 % weight loss of PHBV films in submerged cultivation. Higher degradation rates were observed in YP medium compared to MSM, regardless of the C/N ratio. The crude scl-PHA depolymerase, purified via 80 % ammonium sulfate precipitation, exhibited optimal activity (0.27 ± 0.01 U/mL) at pH 9.0 and 50 °C. These findings identify <em>Actinomadura</em> sp. SCN-SB as a novel thermophilic bacterium with significant potential for enzymatic PHBV degradation, biological recycling, and upcycling in high-temperature composting and landfill conditions.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 408-421"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuai-Chi Liu , Yu-Tong Li , Yu-Qing Qin , Ling Yang , Meng-Ying Liu , Ji Liu , Yang Li , Cheng-Fei Cao , Li-Xiu Gong , Shi-Neng Li , Guo-Dong Zhang , Long-Cheng Tang
{"title":"Mechanically strong, stretchable and self-healable silicone elastomers with designed dynamic networks for exceptional self-adhesion under harsh conditions","authors":"Shuai-Chi Liu , Yu-Tong Li , Yu-Qing Qin , Ling Yang , Meng-Ying Liu , Ji Liu , Yang Li , Cheng-Fei Cao , Li-Xiu Gong , Shi-Neng Li , Guo-Dong Zhang , Long-Cheng Tang","doi":"10.1016/j.aiepr.2025.05.003","DOIUrl":"10.1016/j.aiepr.2025.05.003","url":null,"abstract":"<div><div>Silicone elastomers with wide-temperature stability and excellent mechanical flexibility have attracted considerable interest in both academic and industrial fields. However, the highly cross-linked networks cannot self-heal and usually show poor adhesion to other substrates, limiting their sustainable applications in emerging fields. Developing self-adhesive organosilicon elastomers with high mechanical strength, superior stretchability, and exceptional self-healing performance remains a significant challenge. Herein, we propose a facile method to synthesize self-adhesive organosilicon elastomers with high mechanical strength, flexibility, and self-healing performance by designing dynamic networks. Specifically, multiple reversible physical and chemical bonds, such as disulfide bonds, hydrogen bonds, and Zn<sup>2+</sup> coordination bonds, are integrated into the organosilicon chains via click reactions, carboxylic acid-amine condensation, and ionic coordination. The optimized organosilicon elastomers exhibit exceptional stretchability and mechanical properties, including an elongation at break of ∼5600 %, high strength (2.2 MPa), and toughness (54.38 MJ/m<sup>3</sup>), outperforming traditional organosilicon elastomers. Additionally, the as-prepared elastomers demonstrate remarkable self-healing ability, with 80–93 % healing efficiency at 25–60 <sup>o</sup>C, and excellent self-adhesion to various substrates (0.3–1.0 MPa on aluminum, steel, and wood). These properties are maintained under harsh conditions, including low temperature (−10 <sup>o</sup>C), saltwater, and organic solvents. Clearly, the organosilicon elastomers developed in this work hold significant potential as green and sustainable candidates for various self-adhesive applications.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 422-432"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianshun Zhang , Wenzhuo Wu , Wenqi Zheng , Qi Huang , Zhanyu Zhou , Junpeng Wang , Xuerui Xiao , Hua Wang , Siwei Xiong , Luoxin Wang , Shiwen Yang
{"title":"Highly thermally conductive and insulating aramid/polyphenylene sulfide composite paper with gradient and sandwich structures","authors":"Qianshun Zhang , Wenzhuo Wu , Wenqi Zheng , Qi Huang , Zhanyu Zhou , Junpeng Wang , Xuerui Xiao , Hua Wang , Siwei Xiong , Luoxin Wang , Shiwen Yang","doi":"10.1016/j.aiepr.2025.05.005","DOIUrl":"10.1016/j.aiepr.2025.05.005","url":null,"abstract":"<div><div>With rapid industrial development, effective thermal management has become essential for modern insulating materials. However, conventional aramid paper-based materials face substantial challenges in meeting these evolving demands due to their low thermal conductivity. This study demonstrates a novel fabrication method combining natural sedimentation filtration and thermal lamination to integrate hexagonal boron nitride (h-BN) into aramid/polyphenylene sulfide (PPS) composite paper, resulting in high thermal conductivity insulating aramid composite paper with a gradient structure and sandwich structure. At 60 wt% h-BN loading, the composite exhibits remarkable through-plane thermal conductivity (0.461 W/mK) and breakdown strength (40.96 kV/mm). These values show 255 % and 31.8 % improvements, respectively, over the h-BN-free control sample prepared under identical conditions. The thermal conductivity network formed by h-BN significantly enhances the TC of the composite. The exterior PPS film layer of the sandwich structure substantially augments the composite paper's resilience against thermal stress, chemical corrosion, and electromagnetic radiation. This enhanced durability renders the material highly promising for applications in various domains, including but not limited to electronics and electrical engineering.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 443-453"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-pressure hydrogen effects on thermoplastics: A comprehensive review of permeation, decompression failure, and mechanical properties","authors":"Jiacheng Zhao , Guozhen Ding , Peng Feng , Chao Wu","doi":"10.1016/j.aiepr.2025.05.001","DOIUrl":"10.1016/j.aiepr.2025.05.001","url":null,"abstract":"<div><div>Hydrogen energy is widely regarded as a clean and sustainable alternative to fossil fuel. Among various hydrogen storage options, high-pressure gas cylinders, especially Type IV composite cylinders, are increasingly used due to their light weight and high storage efficiency. Since the thermoplastic liner plays a significant role as a permeation barrier of the total cylinder, the current research findings and gaps related to its properties under high-pressure hydrogen environments are reviewed. Firstly, the potential thermoplastics and processing techniques of the liner are presented. Then, the review focuses on three key properties of thermoplastic liners including permeability, decompression failure and mechanical properties under high-pressure hydrogen environments. The mechanism and key influencing factors of these properties are systematically discussed, followed by the proposal of targeted and valuable improvement strategies. Moreover, testing and standards, quantification and physical models of these three properties are also outlined to provide guidance and reference for future research and applications. In the end, the research gaps and future perspectives related to the thermoplastic liner are identified. This review provides a valuable reference for the performance optimization and engineering application of the thermoplastic liners of Type IV cylinders.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 387-407"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Triethylenetetramine-modified ammonium polyphosphate as charring agent for enhanced flame retardancy in ethylene vinyl acetate copolymer","authors":"Yi-Song Wang , Wen Ye , Yan Jiang , De-Yi Wang","doi":"10.1016/j.aiepr.2025.05.004","DOIUrl":"10.1016/j.aiepr.2025.05.004","url":null,"abstract":"<div><div>In this study, a novel charring agent (TETA-APP) was prepared via ion exchange reaction between triethylenetetramine (TETA) and ammonium polyphosphate (APP). It was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy analysis (SEM), X-ray photoelectron analysis (XPS), and X-ray diffraction analysis (XRD), etc. Furthermore, the obtained TETA-APP was blended with APP to act as flame retardant in ethylene vinyl acetate copolymer (EVA), and the comprehensive properties of the composites were tested. Compared with IFR@EVA-1 (30 wt% APP in EVA), IFR@EVA-3 with 15 wt% TETA-APP and 15 wt% APP in EVA resin resulting in 32.1 % of limiting oxygen index (LOI) and V-0 grade of vertical burning test (UL-94), and showed a significant decrease in both the values of pHRR (reduced by 54.5 %) and SPR (reduced by 46.0 %) in cone calorimetric (CC) analysis. These results demonstrated that TETA-APP performed obviously synergistic effect in APP/EVA system. Then thermogravimetric-infrared spectroscopy (TG-FTIR) and Raman spectroscopy were used to further investigate the flame-retardant mechanism. In gaseous phase, the degraded CO<sub>2</sub>, NH<sub>3</sub> and H<sub>2</sub>O acted as diluents reducing oxygen density, and the formed PO· performed quenching effect to capture free radicals. In condensed phase, a large number of -P-N-C-, -P-C- bonds produced by the decomposition of TETA-APP were helpful for forming a more stable char layer, which restricted the exchange of heat and flammable pyrolysates. Both the effects in gaseous and condensed phases were the principal reason for the much better flame retardancy in EVA resin.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 3","pages":"Pages 433-442"},"PeriodicalIF":9.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiansheng Hong , Yunlong Li , Yuying Zheng , Qian Li
{"title":"Constructing a biomass flame retardant for fire-safe, thermal management, and compressive strength application of polybutylene adipate terephthalate/ polylactic acid foams","authors":"Xiansheng Hong , Yunlong Li , Yuying Zheng , Qian Li","doi":"10.1016/j.aiepr.2024.12.003","DOIUrl":"10.1016/j.aiepr.2024.12.003","url":null,"abstract":"<div><div>Poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) as a biodegradable thermoplastic material have been expected to replace traditional undegradable plastics. However, PBAT resins are highly flammable and have poor thermal stability and lower compressive strength performance. For enhancing PBAT compressive strength, thermal stability, and flame retardancy performance, polylactic acid (PLA) resin was used to mix with the PBAT matrix. Meanwhile, a biomass additive (PA@CS) was prepared through phytic acid (PA) solution as the grinding medium modifying cellulose (CS) particles by the ball milling process. As the PBAT/10PLA/PA@CS foam presented, PA@CS implanted into pore walls which supported the structure integrity of foams and presented the lowest surface temperature when heating at 170 °C for 180 s. The compressive strength of PBAT/10PLA/PA@CS foam with 5 wt% of PA@CS addition reached 1.05 MPa at 20 % strain. During the combustion process, PA@CS, as flame retardants, demonstrated excellent suppressing heat dispassion and fire-resistance performance. For instance, 5 wt% of PA@CS presented the highest ultimate oxygen index (LOI) (27.9 %), and UL-94 V-0 rating. In detail, 5 wt% of PA@CS also reduced the peak of heat release rate (PHRR) from 851.47 kW m<sup>−2</sup> to 524.45 kW m<sup>−2</sup> by 38 %, total heat release (THR) from 84.34 MJ m<sup>−2</sup> to 66.45 MJ m<sup>−2</sup> by 21 %. In this work, PA@CS as an efficient biomass flame retardant provided technical support for the development of high-performance compressive strength, thermal insulation, and flame retardancy PBAT/PLA foams.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 2","pages":"Pages 251-263"},"PeriodicalIF":9.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143852255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}