构建用于防火、热管理和抗压强度应用的聚己二甲酸丁二酯/聚乳酸泡沫生物质阻燃剂

IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES
Xiansheng Hong , Yunlong Li , Yuying Zheng , Qian Li
{"title":"构建用于防火、热管理和抗压强度应用的聚己二甲酸丁二酯/聚乳酸泡沫生物质阻燃剂","authors":"Xiansheng Hong ,&nbsp;Yunlong Li ,&nbsp;Yuying Zheng ,&nbsp;Qian Li","doi":"10.1016/j.aiepr.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>Poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) as a biodegradable thermoplastic material have been expected to replace traditional undegradable plastics. However, PBAT resins are highly flammable and have poor thermal stability and lower compressive strength performance. For enhancing PBAT compressive strength, thermal stability, and flame retardancy performance, polylactic acid (PLA) resin was used to mix with the PBAT matrix. Meanwhile, a biomass additive (PA@CS) was prepared through phytic acid (PA) solution as the grinding medium modifying cellulose (CS) particles by the ball milling process. As the PBAT/10PLA/PA@CS foam presented, PA@CS implanted into pore walls which supported the structure integrity of foams and presented the lowest surface temperature when heating at 170 °C for 180 s. The compressive strength of PBAT/10PLA/PA@CS foam with 5 wt% of PA@CS addition reached 1.05 MPa at 20 % strain. During the combustion process, PA@CS, as flame retardants, demonstrated excellent suppressing heat dispassion and fire-resistance performance. For instance, 5 wt% of PA@CS presented the highest ultimate oxygen index (LOI) (27.9 %), and UL-94 V-0 rating. In detail, 5 wt% of PA@CS also reduced the peak of heat release rate (PHRR) from 851.47 kW m<sup>−2</sup> to 524.45 kW m<sup>−2</sup> by 38 %, total heat release (THR) from 84.34 MJ m<sup>−2</sup> to 66.45 MJ m<sup>−2</sup> by 21 %. In this work, PA@CS as an efficient biomass flame retardant provided technical support for the development of high-performance compressive strength, thermal insulation, and flame retardancy PBAT/PLA foams.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 2","pages":"Pages 251-263"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing a biomass flame retardant for fire-safe, thermal management, and compressive strength application of polybutylene adipate terephthalate/ polylactic acid foams\",\"authors\":\"Xiansheng Hong ,&nbsp;Yunlong Li ,&nbsp;Yuying Zheng ,&nbsp;Qian Li\",\"doi\":\"10.1016/j.aiepr.2024.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) as a biodegradable thermoplastic material have been expected to replace traditional undegradable plastics. However, PBAT resins are highly flammable and have poor thermal stability and lower compressive strength performance. For enhancing PBAT compressive strength, thermal stability, and flame retardancy performance, polylactic acid (PLA) resin was used to mix with the PBAT matrix. Meanwhile, a biomass additive (PA@CS) was prepared through phytic acid (PA) solution as the grinding medium modifying cellulose (CS) particles by the ball milling process. As the PBAT/10PLA/PA@CS foam presented, PA@CS implanted into pore walls which supported the structure integrity of foams and presented the lowest surface temperature when heating at 170 °C for 180 s. The compressive strength of PBAT/10PLA/PA@CS foam with 5 wt% of PA@CS addition reached 1.05 MPa at 20 % strain. During the combustion process, PA@CS, as flame retardants, demonstrated excellent suppressing heat dispassion and fire-resistance performance. For instance, 5 wt% of PA@CS presented the highest ultimate oxygen index (LOI) (27.9 %), and UL-94 V-0 rating. In detail, 5 wt% of PA@CS also reduced the peak of heat release rate (PHRR) from 851.47 kW m<sup>−2</sup> to 524.45 kW m<sup>−2</sup> by 38 %, total heat release (THR) from 84.34 MJ m<sup>−2</sup> to 66.45 MJ m<sup>−2</sup> by 21 %. In this work, PA@CS as an efficient biomass flame retardant provided technical support for the development of high-performance compressive strength, thermal insulation, and flame retardancy PBAT/PLA foams.</div></div>\",\"PeriodicalId\":7186,\"journal\":{\"name\":\"Advanced Industrial and Engineering Polymer Research\",\"volume\":\"8 2\",\"pages\":\"Pages 251-263\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Industrial and Engineering Polymer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542504824000484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504824000484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

聚己二酸丁二酯(PBAT)和聚乳酸(PLA)作为一种生物可降解的热塑性材料有望取代传统的不可降解塑料。然而,PBAT树脂高度易燃,热稳定性差,抗压强度较低。为了提高PBAT的抗压强度、热稳定性和阻燃性能,采用聚乳酸(PLA)树脂与PBAT基体混合。同时,以植酸(PA)溶液为研磨介质,采用球磨法对纤维素(CS)颗粒进行改性,制备了生物质添加剂(PA@CS)。当PBAT/10PLA/PA@CS泡沫出现时,PA@CS植入孔壁,支撑泡沫结构的完整性,在170℃加热180 s时,表面温度最低。当PA@CS添加量为5 wt%时,PBAT/10PLA/PA@CS泡沫在20%应变下的抗压强度达到1.05 MPa。在燃烧过程中,PA@CS作为阻燃剂表现出优异的抑热性能和耐火性能。例如,5 wt% PA@CS的最终氧指数(LOI)最高(27.9%),UL-94 V-0等级最高。5 wt%的PA@CS还使放热率峰值(PHRR)从851.47 kW m−2降低到524.45 kW m−2,降低38%,总放热率(THR)从84.34 MJ m−2降低到66.45 MJ m−2,降低21%。PA@CS作为一种高效的生物质阻燃剂,为开发高性能抗压、保温、阻燃的PBAT/PLA泡沫材料提供了技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing a biomass flame retardant for fire-safe, thermal management, and compressive strength application of polybutylene adipate terephthalate/ polylactic acid foams
Poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) as a biodegradable thermoplastic material have been expected to replace traditional undegradable plastics. However, PBAT resins are highly flammable and have poor thermal stability and lower compressive strength performance. For enhancing PBAT compressive strength, thermal stability, and flame retardancy performance, polylactic acid (PLA) resin was used to mix with the PBAT matrix. Meanwhile, a biomass additive (PA@CS) was prepared through phytic acid (PA) solution as the grinding medium modifying cellulose (CS) particles by the ball milling process. As the PBAT/10PLA/PA@CS foam presented, PA@CS implanted into pore walls which supported the structure integrity of foams and presented the lowest surface temperature when heating at 170 °C for 180 s. The compressive strength of PBAT/10PLA/PA@CS foam with 5 wt% of PA@CS addition reached 1.05 MPa at 20 % strain. During the combustion process, PA@CS, as flame retardants, demonstrated excellent suppressing heat dispassion and fire-resistance performance. For instance, 5 wt% of PA@CS presented the highest ultimate oxygen index (LOI) (27.9 %), and UL-94 V-0 rating. In detail, 5 wt% of PA@CS also reduced the peak of heat release rate (PHRR) from 851.47 kW m−2 to 524.45 kW m−2 by 38 %, total heat release (THR) from 84.34 MJ m−2 to 66.45 MJ m−2 by 21 %. In this work, PA@CS as an efficient biomass flame retardant provided technical support for the development of high-performance compressive strength, thermal insulation, and flame retardancy PBAT/PLA foams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Industrial and Engineering Polymer Research
Advanced Industrial and Engineering Polymer Research Materials Science-Polymers and Plastics
CiteScore
26.30
自引率
0.00%
发文量
38
审稿时长
29 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信