G. Novelli, C. McMonagle, F. Kleemiss, M. Probert, H. Puschmann, S. Grabowsky, H. Maynard-Casely, G. McIntyre, S. Parsons
{"title":"Accurate H-atom parameters for the two polymorphs of L-histidine at 5, 105 and 295 K","authors":"G. Novelli, C. McMonagle, F. Kleemiss, M. Probert, H. Puschmann, S. Grabowsky, H. Maynard-Casely, G. McIntyre, S. Parsons","doi":"10.1107/s205252062100740x","DOIUrl":"https://doi.org/10.1107/s205252062100740x","url":null,"abstract":"The crystal structure of the monoclinic polymorph of the primary amino acid L-histidine has been determined for the first time by single-crystal neutron diffraction, while that of the orthorhombic polymorph has been reinvestigated with an untwinned crystal, improving the experimental precision and accuracy. For each polymorph, neutron diffraction data were collected at 5, 105 and 295 K. Single-crystal X-ray diffraction experiments were also performed at the same temperatures. The two polymorphs, whose crystal packing is interpreted by intermolecular interaction energies calculated using the Pixel method, show differences in the energy and geometry of the hydrogen bond formed along the c direction. Taking advantage of the X-ray diffraction data collected at 5 K, the precision and accuracy of the new Hirshfeld atom refinement method implemented in NoSpherA2 were probed choosing various settings of the functionals and basis sets, together with the use of explicit clusters of molecules and enhanced rigid-body restraints for H atoms. Equivalent atomic coordinates and anisotropic displacement parameters were compared and found to agree well with those obtained from the corresponding neutron structural models.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78949920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding distortions of inorganic substructures in chloridobismuthates(III)","authors":"M. Bujak","doi":"10.1107/s2052520621004753","DOIUrl":"https://doi.org/10.1107/s2052520621004753","url":null,"abstract":"The molar ratio variations of organic and inorganic reactants of chloridobismuthates(III) with N,N-dimethylethane-1,2-diammonium, [(CH3)2NH(CH2)2NH3]2+, and N,N,N′,N′-tetramethylguanidinium, [NH2C{N(CH3)2}2]+, cations lead to the formation of four different products, namely, tris(N,N-dimethylethane-1,2-diammonium) bis[hexachloridobismuthate(III)], [(CH3)2NH(CH2)2NH3]3[BiCl6]2 (1), catena-poly[N,N-dimethylethane-1,2-diammonium [[tetrachloridobismuthate(III)]-μ-chlorido]], {[(CH3)2NH(CH2)2NH3][BiCl5]}\u0000 n\u0000 (2), tris(N,N,N′,N′-tetramethylguanidinium) tri-μ-chlorido-bis[trichloridobismuthate(III)], [NH2C{N(CH3)2}2]3[Bi2Cl9] (3), and catena-poly[N,N,N′,N′-tetramethylguanidinium [[dichloridobismuthate(III)]-di-μ-chlorido]], {[NH2C{N(CH3)2}2][BiCl4]}\u0000 n\u0000 (4). The hybrid crystals 1–4, containing relatively large but different organic cations, are composed of four distinct anionic substructures. They are built up from isolated [BiCl6]3− octahedra in 1, from face-sharing bioctahedral [Bi2Cl9]3− units in 3, from polymeric corner-sharing {[BiCl5]2−}\u0000 n\u0000 chains in 2 and from edge-sharing {[BiCl4]−}\u0000 n\u0000 chains in 4. The distortions shown by the single [BiCl6]3− polyhedra in 1–4 are associated with intrinsic interactions within the anionic substructures and the organic...inorganic substructures interactions, namely, N/C—H...Cl hydrogen bonds. The first factor is the stronger, which is evident in comparison of the experimentally determined geometrical and calculated distortion parameters for the isolated octahedron in 1 to the more complex inorganic substructures in 2–4. The formation of N—H...Cl hydrogen bonds, in terms of their number and strength, is favoured for 1 and 3 containing relatively easily accessed hydrogen-bond acceptors of isolated [BiCl6]3− and [Bi2Cl9]3− units. The studies of the deviations from regularity of the [BiCl6]3− octahedra within inorganic substructures were supported by a survey of the Cambridge Structural Database, which confirmed the role played by different factors in the variations in geometry of the inorganic anions.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"111 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90314821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A general model for the crystal structure of orthorhombic martensite in Ti alloys","authors":"S. Demakov, I. Kylosova, S. Stepanov, M. Bönisch","doi":"10.1107/s2052520621007976","DOIUrl":"https://doi.org/10.1107/s2052520621007976","url":null,"abstract":"The present work develops a novel unified approach to describe the crystal structure of orthorhombic martensite (α′′) in Ti alloys independent of chemical composition. By employing a straightforward yet highly instructive solid sphere model for the basic tetrahedral structural unit the crystal structures involved in the β ↔ α′′/α′ martensitic transformation are categorized into several intermediate configurations. Importantly, a new metric is introduced, δ, which unambiguously characterizes the atomic positions inside the orthorhombic unit cell depending on unit-cell geometry. Furthermore, the exclusive use of relative quantities to describe unit-cell geometry and atom positions renders the approach developed herein independent of alloy content. In this way, shortcomings of commonly suggested structural metrics for α′′ are eliminated. Subsequently, the novel methodology is applied to analyse and compare the crystal structure of α′′ across a broad range of Ti alloys based on experimentally measured unit-cell parameters. From this analysis it emerges that a large fraction of structural configurations along the b.c.c.–Cmcm–h.c.p. transformation path is not observed in quenched alloys. The threshold between the not-observed and the remaining well observed configurations is identified with an ideal Cmcm crystal structure, relative to which the experimentally found α′′ is compressed along its c axis.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76927935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The need for a new generation of substructure searching software","authors":"P. Raithby, R. Taylor","doi":"10.1107/s2052520621007599","DOIUrl":"https://doi.org/10.1107/s2052520621007599","url":null,"abstract":"Advances in synthetic chemistry mean that the molecules now synthesized include increasingly complex entities with mechanical bonds or extensive frameworks. For these complex molecular and supramolecular species, single-crystal X-ray crystallography has proved to be the optimal technique for determining full three-dimensional structures in the solid state. These structures are curated and placed in structural databases, the most comprehensive of which (for organic and metallo–organic structures) is the Cambridge Structural Database. A question of increasing importance is how users can search such databases effectively for these structures. Here some of the classes of complex molecules and supramolecules and the challenges associated with searching for them are highlighted. The idea of substructure searches that involve topological searches as well as searches for molecular fragments is developed, and significant enhancements are proposed to substructure search programs that are both achievable and highly beneficial for both the database user community and the broader chemistry community.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91272502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ferromagnetoelectric phases of hexaferrites: a group-theoretical analysis","authors":"V. B. Shirokov, A. Razumnaya, A. Mikheykin","doi":"10.1107/s2052520621007125","DOIUrl":"https://doi.org/10.1107/s2052520621007125","url":null,"abstract":"A symmetry-guided approach for designing and tailoring magnetoelectric and multiferroic hexaferrites is proposed. A group-theoretical study of the magnetoferroelectric structures of a hexagonal ferrite was carried out. The results were applied to M-, W- and Z-type hexaferrites. It is shown that the magnetic structure cannot be collinear in the main magnetic phase, with the direction of the magnetic moment along the hexagonal axis. Magnetic sublattices are shown in which cation substitution should lead to the formation of a multiferroic state. A thermodynamic model of a hexagonal ferroelectric ferrimagnet was constructed, in which isostructural phase transitions were observed.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82655163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Stash, Ekaterina O. Terekhova, S. Ivanov, V. Tsirelson
{"title":"X-ray diffraction study of the atomic interactions, anharmonic displacements and inner-crystal field in orthorhombic KNbO3","authors":"A. Stash, Ekaterina O. Terekhova, S. Ivanov, V. Tsirelson","doi":"10.1107/s2052520621006892","DOIUrl":"https://doi.org/10.1107/s2052520621006892","url":null,"abstract":"An X-ray diffraction study aimed at establishing the subtle details of the electron density and anharmonicity of the atomic vibrations in a stoichiometric monodomain single crystal of potassium niobate, KNbO3, has been conducted at room temperature (orthorhombic ferroelectric phase Amm2). The cation and anion displacements obtained from the experiment are weakly anharmonic without any manifestation of structural disorder. The chemical bond and interatomic interactions inside and between crystal substructures at the balance of intracrystalline forces are characterized in detail. The role of each of the ions in the formation of the ferroelectric phase was studied and the features of the electron-density deformation in the niobium and oxygen substructures, and the role of each of them in the occurrence of spontaneous polarization are established. The position-space distribution of electrostatic and quantum forces in KNbO3 is restored. It is emphasized that for the completeness of the analysis of the nature of the ferroelectric properties it is necessary to consider both static and kinetic electronic factors, which are of a quantum origin. The experimental results and theoretical estimations by the Kohn–Sham calculation with periodic boundary conditions are in reasonable agreement, thus indicating the physical significance of the findings of this study.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72954226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"N-Representable one-electron reduced density matrices reconstruction at non-zero temperatures","authors":"Y. Launay, J. Gillet","doi":"10.1107/s2052520621007228","DOIUrl":"https://doi.org/10.1107/s2052520621007228","url":null,"abstract":"This article retraces different methods that have been explored to account for the atomic thermal motion in the reconstruction of one-electron reduced density matrices from experimental X-ray structure factors (XSF) and directional Compton profiles (DCP). Attention has been paid to propose the simplest possible model, which obeys the necessary N-representability conditions, while accurately reproducing all available experimental data. The deconvolution of thermal effects makes it possible to obtain an experimental static density matrix, which can directly be compared with theoretical 1-RDM (reduced density matrix). It is found that above a 1% statistical noise level, the role played by Compton scattering data becomes negligible and no accurate 1-RDM is reachable. Since no thermal 1-RDM is available as a reference, the quality of an experimentally derived temperature-dependent matrix is difficult to assess. However, the accuracy of the obtained static 1-RDM, through the performance of the refined observables, is strong evidence that the Semi-Definite Programming method is robust and well adapted to the reconstruction of an experimental dynamical 1-RDM.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73085328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Predrag Dabić, V. Kahlenberg, Biljana Krüger, M. Rodić, Sabina Kovač, J. Blanuša, Z. Jagličić, L. Karanović, V. Petříček, A. Kremenović
{"title":"Low-temperature phase transition and magnetic properties of K3YbSi2O7","authors":"Predrag Dabić, V. Kahlenberg, Biljana Krüger, M. Rodić, Sabina Kovač, J. Blanuša, Z. Jagličić, L. Karanović, V. Petříček, A. Kremenović","doi":"10.1107/S2052520621006077","DOIUrl":"https://doi.org/10.1107/S2052520621006077","url":null,"abstract":"The new ambient-temperature hexagonal (space group P63\u0000 /mmc) polymorph of tripotassium ytterbium(III) disilicate (β-K3YbSi2O7) has been synthesized by the high-temperature flux method and subsequently structurally characterized. In the course of the temperature-dependent single-crystal diffraction experiments, a phase transformation of β-K3YbSi2O7 to a novel low-temperature orthorhombic phase (β′-K3YbSi2O7, space group Cmcm) has been observed at about 210 K. β-K3YbSi2O7 is isostructural with K3ErSi2O7, whereas β′-K3YbSi2O7 adopts a new type of structure. Both compounds can be built up from a regular alternation of layers of two types, which are parallel to the (001) plane. In the octahedral layer, YbO6 octahedra are isolated and linked by K1O6+3 polyhedra. The second, slightly thicker sorosilicate layer is formed by a combination of Si2O7 dimers and K2O6+3 polyhedra. The boundary between the layers is a pseudo-kagome oxide sheet based on 3.6.3.6 meshes. The phase transition is due to a tilt of the two SiO4 tetrahedra forming a single dimer which induces a decrease of the Si—O—Si angle between bridging Si—O bonds from 180° (dictated by symmetry in space group P63/mmc) to ≃164°. Magnetic characterization indicates that K3YbSi2O7 remains paramagnetic down to 2 K, showing no apparent influence of the phase transformation on its magnetic properties. Analysis of the magnetization data revealed the positions of the three lowest crystal field levels of the Yb3+ cations, as well as the corresponding projections of their angular momentum on the direction of the magnetic field.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81848387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Siedliska, T. Pikula, Z. Surowiec, R. Panek, R. Idczak, V. Tran, E. Jartych
{"title":"Crystal structure and hyperfine interactions of delafossite (CuFeO2) synthesized hydrothermally","authors":"K. Siedliska, T. Pikula, Z. Surowiec, R. Panek, R. Idczak, V. Tran, E. Jartych","doi":"10.1107/S2052520621005072","DOIUrl":"https://doi.org/10.1107/S2052520621005072","url":null,"abstract":"The powder specimen of CuFeO2 delafossite was synthesized by a hydrothermal method at 453 K. X-ray diffraction studies confirmed that the obtained pure delafossite phase was a mixture of the 3R and 2H polytypes, predominantly the former. Mössbauer spectral analysis revealed the paramagnetic state of the copper ferrite at room temperature. Below 12 K the spectra had complicated shapes of Zeeman sextets. Changes in the character of the hyperfine interactions did not correspond to the data reported for the single-crystal CuFeO2. Magnetization measurements revealed that magnetic transition occurred at Néel temperature (T\u0000 N) = 12.5 K.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90826222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Lis, S. Kichanov, D. Kozlenko, N. Belozerova, E. V. Lukin, S. Balakumar, B. Savenko
{"title":"Pressure-induced structural phase transitions in bismuth tungstate Bi2WO6","authors":"O. Lis, S. Kichanov, D. Kozlenko, N. Belozerova, E. V. Lukin, S. Balakumar, B. Savenko","doi":"10.1107/S2052520621005175","DOIUrl":"https://doi.org/10.1107/S2052520621005175","url":null,"abstract":"The pressure-induced structural phase transitions in bismuth tungstate Bi2WO6 have been studied using neutron diffraction and Raman spectroscopy at high pressures up to 7 and 30 GPa, respectively. A rich structural polymorphism was revealed. At P ≃ 3.5 GPa a phase transition from the initial orthorhombic phase of P21\u0000 ab symmetry to an orthorhombic phase of B2cb symmetry was observed. This transition is caused by the complex spatial rotation of the WO6 octahedra. A subsequent isostructural phase transition to another orthorhombic phase of B2cb symmetry was detected at P ≃ 5.9 GPa, accompanied by changes in both the mutual rotation and tilting of the oxygen octahedra with respect to the crystal b axis. Two more pressure-induced phase transitions in Bi2WO6 at high pressures of 11.5 and 20 GPa were observed in the Raman spectra. These pressure-driven phase transitions in bismuth tungstate are accompanied by anomalies in the pressure dependences of the unit-cell parameters, bond lengths and angles, and in the vibrational modes.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73055285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}