ACM Transactions on Graphics (TOG)最新文献

筛选
英文 中文
Reconstruction of Machine-Made Shapes from Bitmap Sketches 根据位图草图重建机器制作的形状
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618361
Ivan Puhachov, Cedric Martens, P. Kry, Mikhail Bessmeltsev
{"title":"Reconstruction of Machine-Made Shapes from Bitmap Sketches","authors":"Ivan Puhachov, Cedric Martens, P. Kry, Mikhail Bessmeltsev","doi":"10.1145/3618361","DOIUrl":"https://doi.org/10.1145/3618361","url":null,"abstract":"We propose a method of reconstructing 3D machine-made shapes from bitmap sketches by separating an input image into individual patches and jointly optimizing their geometry. We rely on two main observations: (1) human observers interpret sketches of man-made shapes as a collection of simple geometric primitives, and (2) sketch strokes often indicate occlusion contours or sharp ridges between those primitives. Using these main observations we design a system that takes a single bitmap image of a shape, estimates image depth and segmentation into primitives with neural networks, then fits primitives to the predicted depth while determining occlusion contours and aligning intersections with the input drawing via optimization. Unlike previous work, our approach does not require additional input, annotation, or templates, and does not require retraining for a new category of man-made shapes. Our method produces triangular meshes that display sharp geometric features and are suitable for downstream applications, such as editing, rendering, and shading.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"44 7","pages":"1 - 16"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138602244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene Rendering ScaNeRF:用于大规模场景渲染的可扩展捆绑调整神经辐射场
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618369
Xiuchao Wu, Jiamin Xu, Xin Zhang, Hujun Bao, Qixing Huang, Yujun Shen, James Tompkin, Weiwei Xu
{"title":"ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene Rendering","authors":"Xiuchao Wu, Jiamin Xu, Xin Zhang, Hujun Bao, Qixing Huang, Yujun Shen, James Tompkin, Weiwei Xu","doi":"10.1145/3618369","DOIUrl":"https://doi.org/10.1145/3618369","url":null,"abstract":"High-quality large-scale scene rendering requires a scalable representation and accurate camera poses. This research combines tile-based hybrid neural fields with parallel distributive optimization to improve bundle-adjusting neural radiance fields. The proposed method scales with a divide-and-conquer strategy. We partition scenes into tiles, each with a multi-resolution hash feature grid and shallow chained diffuse and specular multilayer perceptrons (MLPs). Tiles unify foreground and background via a spatial contraction function that allows both distant objects in outdoor scenes and planar reflections as virtual images outside the tile. Decomposing appearance with the specular MLP allows a specular-aware warping loss to provide a second optimization path for camera poses. We apply the alternating direction method of multipliers (ADMM) to achieve consensus among camera poses while maintaining parallel tile optimization. Experimental results show that our method outperforms state-of-the-art neural scene rendering method quality by 5%--10% in PSNR, maintaining sharp distant objects and view-dependent reflections across six indoor and outdoor scenes.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"20 10","pages":"1 - 18"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138602790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
K-Surfaces: Bézier-Splines Interpolating at Gaussian Curvature Extrema K 曲面:在高斯曲率极值处插值的贝塞尔样条曲线
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618383
Tobias Djuren, M. Kohlbrenner, Marc Alexa
{"title":"K-Surfaces: Bézier-Splines Interpolating at Gaussian Curvature Extrema","authors":"Tobias Djuren, M. Kohlbrenner, Marc Alexa","doi":"10.1145/3618383","DOIUrl":"https://doi.org/10.1145/3618383","url":null,"abstract":"K-surfaces are an interactive modeling technique for Bézier-spline surfaces. Inspired by k-curves by [Yan et al. 2017], each patch provides a single control point that is being interpolated at a local extremum of Gaussian curvature. The challenge is to solve the inverse problem of finding the center control point of a Bézier patch given the boundary control points and the handle. Unlike the situation in 2D, bi-quadratic Bézier patches may exhibit none, one, or several extrema, and finding them is non-trivial. We solve the difficult inverse problem, including the possible selection among several extrema, by learning the desired function from samples, generated by computing Gaussian curvature of random patches. This approximation provides a stable solution to the ill-defined inverse problem and is much more efficient than direct numerical optimization, facilitating the interactive modeling framework. The local solution is used in an iterative optimization incorporating continuity constraints across patches. We demonstrate that the surface varies smoothly with the handle location and that the resulting modeling system provides local and generally intuitive control. The idea of learning the inverse mapping from handles to patches may be applicable to other parametric surfaces.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"1 5","pages":"1 - 13"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138602989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shrink & Morph: 3D-Printed Self-Shaping Shells Actuated by a Shape Memory Effect 收缩与变形:由形状记忆效应驱动的三维打印自塑形外壳
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618386
David Jourdan, Pierre-Alexandre Hugron, Camille Schreck, Jonàs Martínez, Sylvain Lefebvre
{"title":"Shrink & Morph: 3D-Printed Self-Shaping Shells Actuated by a Shape Memory Effect","authors":"David Jourdan, Pierre-Alexandre Hugron, Camille Schreck, Jonàs Martínez, Sylvain Lefebvre","doi":"10.1145/3618386","DOIUrl":"https://doi.org/10.1145/3618386","url":null,"abstract":"While 3D printing enables the customization and home fabrication of a wide range of shapes, fabricating freeform thin-shells remains challenging. As layers misalign with the curvature, they incur structural deficiencies, while the curved shells require large support structures, typically using more material than the part itself. We present a computational framework for optimizing the internal structure of 3D printed plates such that they morph into a desired freeform shell when heated. This exploits the shrinkage effect of thermoplastics such as PLA, which store internal stresses along the deposition directions. These stresses get released when the material is heated again above its glass transition temperature, causing an anisotropic deformation that induces curvature. Our inverse design method takes as input a freeform surface and finds an optimized set of deposition trajectories in each layer such that their anisotropic shrinkage deforms the plate into the prescribed surface geometry. We optimize for a continuous vector field that varies across the plate and within its thickness. The algorithm then extracts a set of deposition trajectories from the vector field in order to fabricate the flat plates on standard FFF printers. We validate our algorithm on freeform, doubly-curved surfaces.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"81 1","pages":"1 - 13"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slippage-Preserving Reshaping of Human-Made 3D Content 人工三维内容的防滑重塑
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618391
Chrystiano Araújo, Nicholas Vining, Silver Burla, Manuel Ruivo De Oliveira, Enrique Rosales, Alla Sheffer
{"title":"Slippage-Preserving Reshaping of Human-Made 3D Content","authors":"Chrystiano Araújo, Nicholas Vining, Silver Burla, Manuel Ruivo De Oliveira, Enrique Rosales, Alla Sheffer","doi":"10.1145/3618391","DOIUrl":"https://doi.org/10.1145/3618391","url":null,"abstract":"Artists often need to reshape 3D models of human-made objects by changing the relative proportions or scales of different model parts or elements while preserving the look and structure of the inputs. Manually reshaping inputs to satisfy these criteria is highly time-consuming; the edit in our teaser took an artist 5 hours to complete. However, existing methods for 3D shape editing are largely designed for other tasks and produce undesirable outputs when repurposed for reshaping. Prior work on 2D curve network reshaping suggests that in 2D settings the user-expected outcome is achieved when the reshaping edit keeps the orientations of the different model elements and when these elements scale as-locally-uniformly-as-possible (ALUP). However, our observations suggest that in 3D viewers are tolerant of non-uniform tangential scaling if and when this scaling preserves slippage and reduces changes in element size, or scale, relative to the input. Slippage preservation requires surfaces which are locally slippable with respect to a given rigid motion to retain this property post-reshaping (a motion is slippable if when applied to the surface, it slides the surface along itself without gaps). We build on these observations by first extending the 2D ALUP framework to 3D and then modifying it to allow non-uniform scaling while promoting slippage and scale preservation. Our 3D ALUP extension produces reshaped outputs better aligned with viewer expectations than prior alternatives; our slippage-aware method further improves the outcome producing results on par with manual reshaping ones. Our method does not require any user input beyond specifying control handles and their target locations. We validate our method by applying it to over one hundred diverse inputs and by comparing our results to those generated by alternative approaches and manually. Comparative study participants preferred our outputs over the best performing traditional deformation method by a 65% margin and over our 3D ALUP extension by a 61% margin; they judged our outputs as at least on par with manually produced ones.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"81 21","pages":"1 - 18"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SLANG.D: Fast, Modular and Differentiable Shader Programming SLANG.D:快速、模块化和可微分着色器编程
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618353
S. Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan Ragan-Kelley, Frédo Durand, Aaron Lefohn, Yong He
{"title":"SLANG.D: Fast, Modular and Differentiable Shader Programming","authors":"S. Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan Ragan-Kelley, Frédo Durand, Aaron Lefohn, Yong He","doi":"10.1145/3618353","DOIUrl":"https://doi.org/10.1145/3618353","url":null,"abstract":"We introduce SLANG.D, an extension to the Slang shading language that incorporates first-class automatic differentiation support. The new shading language allows us to transform a Direct3D-based path tracer to be fully differentiable with minor modifications to existing code. SLANG.D enables a shared ecosystem between machine learning frameworks and pre-existing graphics hardware API-based rendering systems, promoting the interchange of components and ideas across these two domains. Our contributions include a differentiable type system designed to ensure type safety and semantic clarity in codebases that blend differentiable and non-differentiable code, language primitives that automatically generate both forward and reverse gradient propagation methods, and a compiler architecture that generates efficient derivative propagation shader code for graphics pipelines. Our compiler supports differentiating code that involves arbitrary control-flow, dynamic dispatch, generics and higher-order differentiation, while providing developers flexible control of checkpointing and gradient aggregation strategies for best performance. Our system allows us to differentiate an existing real-time path tracer, Falcor, with minimal change to its shader code. We show that the compiler-generated derivative kernels perform as efficiently as handwritten ones. In several benchmarks, the SLANG.D code achieves significant speedup when compared to prior automatic differentiation systems.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"66 25","pages":"1 - 28"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138605060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable Discrete Bending by Analytic Eigensystem and Adaptive Orthotropic Geometric Stiffness 通过分析特征系统和自适应各向同性几何刚度实现稳定的离散弯曲
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618372
Zhendong Wang, Yin Yang, Huamin Wang
{"title":"Stable Discrete Bending by Analytic Eigensystem and Adaptive Orthotropic Geometric Stiffness","authors":"Zhendong Wang, Yin Yang, Huamin Wang","doi":"10.1145/3618372","DOIUrl":"https://doi.org/10.1145/3618372","url":null,"abstract":"In this paper, we address two limitations of dihedral angle based discrete bending (DAB) models, i.e. the indefiniteness of their energy Hessian and their vulnerability to geometry degeneracies. To tackle the indefiniteness issue, we present novel analytic expressions for the eigensystem of a DAB energy Hessian. Our expressions reveal that DAB models typically have positive, negative, and zero eigenvalues, with four of each, respectively. By using these expressions, we can efficiently project an indefinite DAB energy Hessian as positive semi-definite analytically. To enhance the stability of DAB models at degenerate geometries, we propose rectifying their indefinite geometric stiffness matrix by using orthotropic geometric stiffness matrices with adaptive parameters calculated from our analytic eigensystem. Among the twelve motion modes of a dihedral element, our resulting Hessian for DAB models retains only the desirable bending modes, compared to the undesirable altitude-changing modes of the exact Hessian with original geometric stiffness, all modes of the Gauss-Newton approximation without geometric stiffness, and no modes of the projected Hessians with inappropriate geometric stiffness. Additionally, we suggest adjusting the compression stiffness according to the Kirchhoff-Love thin plate theory to avoid over-compression. Our method not only ensures the positive semidefiniteness but also avoids instability caused by large bending forces at degenerate geometries. To demonstrate the benefit of our approaches, we show comparisons against existing methods on the simulation of cloth and thin plates in challenging examples.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"60 19","pages":"1 - 16"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138605105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans 从皮肤到骨骼:实现生物力学上精确的 3D 数字化人体
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618381
Marilyn Keller, Keenon Werling, Soyong Shin, Scott L. Delp, S. Pujades, C. K. Liu, Michael J. Black
{"title":"From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans","authors":"Marilyn Keller, Keenon Werling, Soyong Shin, Scott L. Delp, S. Pujades, C. K. Liu, Michael J. Black","doi":"10.1145/3618381","DOIUrl":"https://doi.org/10.1145/3618381","url":null,"abstract":"Great progress has been made in estimating 3D human pose and shape from images and video by training neural networks to directly regress the parameters of parametric human models like SMPL. However, existing body models have simplified kinematic structures that do not correspond to the true joint locations and articulations in the human skeletal system, limiting their potential use in biomechanics. On the other hand, methods for estimating biomechanically accurate skeletal motion typically rely on complex motion capture systems and expensive optimization methods. What is needed is a parametric 3D human model with a biomechanically accurate skeletal structure that can be easily posed. To that end, we develop SKEL, which re-rigs the SMPL body model with a biomechanics skeleton. To enable this, we need training data of skeletons inside SMPL meshes in diverse poses. We build such a dataset by optimizing biomechanically accurate skeletons inside SMPL meshes from AMASS sequences. We then learn a regressor from SMPL mesh vertices to the optimized joint locations and bone rotations. Finally, we re-parametrize the SMPL mesh with the new kinematic parameters. The resulting SKEL model is animatable like SMPL but with fewer, and biomechanically-realistic, degrees of freedom. We show that SKEL has more biomechanically accurate joint locations than SMPL, and the bones fit inside the body surface better than previous methods. By fitting SKEL to SMPL meshes we are able to \"upgrade\" existing human pose and shape datasets to include biomechanical parameters. SKEL provides a new tool to enable biomechanics in the wild, while also providing vision and graphics researchers with a better constrained and more realistic model of human articulation. The model, code, and data are available for research at https://skel.is.tue.mpg.de.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"33 32","pages":"1 - 12"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discontinuity-Aware 2D Neural Fields 意识到不连续性的二维神经场
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618379
Yash Belhe, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, Tzu-Mao Li
{"title":"Discontinuity-Aware 2D Neural Fields","authors":"Yash Belhe, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, Tzu-Mao Li","doi":"10.1145/3618379","DOIUrl":"https://doi.org/10.1145/3618379","url":null,"abstract":"Neural image representations offer the possibility of high fidelity, compact storage, and resolution-independent accuracy, providing an attractive alternative to traditional pixel- and grid-based representations. However, coordinate neural networks fail to capture discontinuities present in the image and tend to blur across them; we aim to address this challenge. In many cases, such as rendered images, vector graphics, diffusion curves, or solutions to partial differential equations, the locations of the discontinuities are known. We take those locations as input, represented as linear, quadratic, or cubic Bézier curves, and construct a feature field that is discontinuous across these locations and smooth everywhere else. Finally, we use a shallow multi-layer perceptron to decode the features into the signal value. To construct the feature field, we develop a new data structure based on a curved triangular mesh, with features stored on the vertices and on a subset of the edges that are marked as discontinuous. We show that our method can be used to compress a 100, 0002-pixel rendered image into a 25MB file; can be used as a new diffusion-curve solver by combining with Monte-Carlo-based methods or directly supervised by the diffusion-curve energy; or can be used for compressing 2D physics simulation data.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"31 1","pages":"1 - 11"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Design of Robotic Character Kinematics 机器人角色运动学的优化设计
ACM Transactions on Graphics (TOG) Pub Date : 2023-12-04 DOI: 10.1145/3618404
Guirec Maloisel, Christian Schumacher, Espen Knoop, R. Grandia, Moritz Bächer
{"title":"Optimal Design of Robotic Character Kinematics","authors":"Guirec Maloisel, Christian Schumacher, Espen Knoop, R. Grandia, Moritz Bächer","doi":"10.1145/3618404","DOIUrl":"https://doi.org/10.1145/3618404","url":null,"abstract":"The kinematic motion of a robotic character is defined by its mechanical joints and actuators that restrict the relative motion of its rigid components. Designing robots that perform a given target motion as closely as possible with a fixed number of actuated degrees of freedom is challenging, especially for robots that form kinematic loops. In this paper, we propose a technique that simultaneously solves for optimal design and control parameters for a robotic character whose design is parameterized with configurable joints. At the technical core of our technique is an efficient solution strategy that uses dynamic programming to solve for optimal state, control, and design parameters, together with a strategy to remove redundant constraints that commonly exist in general robot assemblies with kinematic loops. We demonstrate the efficacy of our approach by either editing the design of an existing robotic character, or by optimizing the design of a new character to perform a desired motion.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"16 7","pages":"1 - 15"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信