{"title":"Thermal Conductivity of CaSrFe2O6-δ","authors":"Ram Krishna Hona","doi":"10.19080/ajop.2024.06.555685","DOIUrl":"https://doi.org/10.19080/ajop.2024.06.555685","url":null,"abstract":"The thermal conductivity of CaSrFe2O6-δ, an oxygen-deficient perovskite, is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, we present an investigation of the thermal conductivity of CaSrFe2O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe2O6-δ was found to be 0.574W/m/K, exhibiting a notable thermal insulation property.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"51 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140510991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant-Based Flocculants: Alternative Materials to Synthetic Polymers for Sludge Dewatering","authors":"F. Ben Rebah","doi":"10.19080/ajop.2023.06.555680","DOIUrl":"https://doi.org/10.19080/ajop.2023.06.555680","url":null,"abstract":"The use of conventional organic or inorganic synthetic chemicals in sludge dewatering process is currently leading to new concerns. Worrying issues are related to the pollution of the environment and the risks for human heath caused by the generation of large quantity of sludge containing residual metal ions and toxic residual organic monomers. Plants such as okra, cactus, moringa and aloe showed their ability in enhancing sludge dewaterability. Interestingly, the utilization of plant-based materials produce nontoxic and biodegradable sludge, and represent a sustainable strategy to substitute chemicals in sludge processing.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91066011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Imaging Methods for Volumetric Additive Manufacturing","authors":"Dongping Terrel-Perez","doi":"10.19080/ajop.2023.06.555679","DOIUrl":"https://doi.org/10.19080/ajop.2023.06.555679","url":null,"abstract":"Tomographic volumetric additive manufacturing (VAM) is a technique that enables light-induced curing of photoresins into complex 3D end use objects within a single step. This is made possible through projecting tomographically patterned light energy into a photo-curable resin volume within a rotating container. In order to monitor, quantify, and control curing during tomographic VAM, researchers need to visualize the curing parts in real-time. This may enable advancements toward dynamic, controlled and closedloop VAM methods in the future, as some researchers have shown. Herein we briefly review various optical imaging methods used to monitor printing in real-time, as well as provide some perspectives for future needs and considerations for imaging methods in VAM.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"107 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79034147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensor-based and Robot Sorting Processes and their Role in Achieving European Recycling Goals - A Review","authors":"K. Friedrich","doi":"10.19080/ajop.2021.05.555668","DOIUrl":"https://doi.org/10.19080/ajop.2021.05.555668","url":null,"abstract":"A circular economy is the stated aim of current technological and political developments in the waste management sector. Achieving the goal of a circular economy requires significant improvements in waste treatment technologies. For this reason, this paper summarises the relevant technologies, detailing the developments in the significant sensor-based sorting technologies. This review analyses the key spectral analysis methods like Near-Infrared Spectroscopy, Visual Spectroscopy, X-ray transmission, X-ray fluorescence analysis and Laser-Induced Breakdown Spectroscopy. This study further contains a detailed analysis of the standard sensor-based sorting construction types chute sorter, belt sorter and robot-aided sorting. Further insights in the branch of sensor-based sorting are permitted by describing the key players and stakeholders in sensor-based sorting, detailing the area of expertise and current fields of study for primary sensor and sorting machine suppliers. A convenient lookup table detailing the capabilities of these significant suppliers is provided. The last chapter summarises relevant trends and developments in digitalisation and Industry 4.0 in the waste and recycling sector, elaborating on relevant technology like digital waste management, sorting robots in waste management, smart villages and recyclable materials scanners. The reviewed data portrays the waste management industry’s substantial developments. While new technologies, like machine learning, convolutional neural networks and robot sorting, are increasingly implemented, a substantial discrepancy exists between technological capabilities and the current State-of-the-Art.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84793066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human-Centric Regulatory in Point-of-Care Manufacturing for 3D Printed PEEK Polymer Implants with Functionalized Implant Surface","authors":"Dietmar Schaffarczyk","doi":"10.19080/ajop.2021.05.555663","DOIUrl":"https://doi.org/10.19080/ajop.2021.05.555663","url":null,"abstract":"This article aims to define a regulatory approach for future medical technologies to be applied to the research, design, development, and manufacturing of smart medical devices. In the scope of this perspective: A human-centric regulatory approach and regulatory thinking method for 3D printed PEEK polymer implants. The mode of operations of the functionalization method, its safety and clinical performance, was verified and validated beforehand by means of mechanical testings, comparative cell tests in vitro and in vivo in a comparative animal model: The MBT procedure was developed using ISO 13485 certified processes and GLP standards. MBT was also developed considering the safety and (clinical) performance requirements as prescribed by the Medical Device Regulation (EU) 2017/745 for implants. For this purpose, the requirements from Annex I of the Medical Device Regulation (Regulation EU 2017/745) were adapted to the requirements for coating technologies. Mechanical testing followed a precise defined test and verification matrix. Each test followed its own rationale and test setup. Where possible, standard test methods and accredited facilities have been used. As MBT is an entirely innovative SFT, general standard test methods for this technology are not established but have been defined, described, executed, and evaluated. During the design and development and during design transfer, comparative cell tests have been performed. Relevant cell lines have been used to prove the unique characteristics of MBT compared to standard and golden standard materials: Titanium coated PEEK, Ha-enhanced PEEK, and pure PEEK. A comparative animal model has been performed according to GLP standards by Vetsuisse Zurich. The study protocol was approved by the veterinarians of the Kanton ZH (University of Zurich, Vetsuisse, study protocol number: ZH132/18, study title: MBT - a new covalent binding molecule for enhancing osseointegration). A comparative split mouth study setup was used. Screw-design test dowels have been implanted in dense bone of sheep and analyzed via histology measurements. For the applicability of MBT, it can be stated that the SFT does not influence the clinical applicability of the connected medical device:","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85480368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modified Cellulose-Based Edible Polymer Coating: An Investigation of Castor Oil Concentration for Application in Apple Preservation","authors":"H. Yahyaei","doi":"10.19080/ajop.2021.05.555659","DOIUrl":"https://doi.org/10.19080/ajop.2021.05.555659","url":null,"abstract":"The purpose of this study was to evaluate the effect of adding various concentrations of castor oil (2% and 4% v/v) on the properties of edible films based on carboxymethyl cellulose (CMC). Moisture content, water solubility, tensile strength, elongation at break, elastic modulus, water vapor permeability, optical and thermal properties and antioxidant activity of the films were examined. The results demonstrated that the presence of castor oil led to a decrease in moisture content, water solubility and mechanical strength of the films. The film containing 4% of oil showed the highest water vapor permeability. The optical properties measurement represented that all of the samples were transparent. By the addition of castor oil, the antioxidant activity of the films improved largely. Thermal properties of the samples had also been investigated and it was determined that the effect of castor oil on the melting point was negligible. Finally, the performance of the coatings for protecting fresh apples was studied with measuring the pH value of apples and performing some field test.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83086724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sol-Gel Transition and Critical Gel in Vulcanization Reaction","authors":"D. Nichetti","doi":"10.19080/ajop.2021.05.555655","DOIUrl":"https://doi.org/10.19080/ajop.2021.05.555655","url":null,"abstract":"This study highlights how the transition from uncured to cured state in rubber is characterized by the formation of a particular network structure, so-called critical gel. Critical gel is formed in the first stages of vulcanization and is independent by the macromolecular structure and","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81340980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling the Creep Curves of β-BOPP Film","authors":"Wang Kejian","doi":"10.19080/ajop.2021.04.555651","DOIUrl":"https://doi.org/10.19080/ajop.2021.04.555651","url":null,"abstract":"The effect of annealing on the creep and recovery properties of β -BOPP film was studied. The creep resistance can be improved obviously by annealing, the modification becomes better with elongating the duration. Four-parameter Burger model and Weibull distribution function well described such cases.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73671453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hexaferrite Based Flexible Polymeric Nanocomposites for Microwave Absorbing Applications","authors":"A. Ansari","doi":"10.19080/ajop.2021.04.555647","DOIUrl":"https://doi.org/10.19080/ajop.2021.04.555647","url":null,"abstract":"The flexible microwave absorbers are being considered as new generation materials which have wide applications in the local area network, wireless data communication, radar systems, satellite communication, satellite television, electronic devices and the heating systems, etc. A number of dielectric, magnetic, and magneto – dielectric materials are frequently used as microwave absorbers for various applications. The carbonaceous materials like carbon fiber, carbon nanotubes, graphite and graphene and inorganic materials like metals, metal oxides, and conducting alloys are used to develop the dielectric microwave absorber because of their conducting loss property. The magnetic materials like magnetic metals and their compounds are used to produce magnetic microwave absorber due to their hysteresis loss property. The combined features of the dielectric and magnetic materials together assist in the preparation of magneto – dielectric microwave absorbers. The spinel ferrites are generally employed as magnetic components for the design of microwave absorbing materials. However, the spinel ferrite based microwave absorbers have usually been reported to work at frequencies below 1 GHz. A very high amount of spinel ferrites (~70 90 wt %) is required for the design of microwave absorber working above 1 GHz frequency (for example, X-band). However, such high content of spinel ferrites makes the absorbers as heavy in weight due to which their applications in the aerospace industry are constrained. Apart from the heavy weight, the spinel ferrite based microwave absorbers are also restricted in some practical applications due to their large thickness, narrower absorption bandwidths, and the brittleness property. In order to increase the applicability of ferrite based microwave absorbers, the hexagonal ferrites (M-type) appear to be better option due to their relatively high magnetic losses resulting into broadband and efficient microwave absorber for the higher frequency applications (X-band). To circumvent the brittleness of the ferrite/hexagonal ferrite based microwave absorbers and to make them flexible, the hexagonal ferrites can be dispersed into the thermoplast polymers or rubber like host materials.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75544403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymeric Materials for the Development of Dual↓Working Gastroretentive Drug Delivery Systems. A Breakthrough Approach","authors":"M. D. Paz, R. Grosso","doi":"10.19080/ajop.2021.04.555646","DOIUrl":"https://doi.org/10.19080/ajop.2021.04.555646","url":null,"abstract":"Oral route is the most convenient and widely used method of drug administration, representing about 90% of all therapies used. It displays great advantages, such as being non-invasive, easy to administer (with the consequent high patient compliance) and cost-effective. However, serious drawbacks to conventional oral dosage forms are imposed by the gastrointestinal tract. Large fluctuations in drug bioavailability are found due to the influence of physiological factors such as variations in pH, high enzymatic activity and gastric emptying. This is the reason why frequent drug administrations are required to maintain the therapeutic plasma level of the drug. Gastroretentive Drug Delivery Systems (GRDDS) have emerged as an ideal approach to overcome these drawbacks. They are designed to prolong the gastric residence time (GRT) of the dosage forms in the stomach so that the time between dose administration is lengthened. Although their development has partially overcome the drawbacks associated with conventional dosage form, further work is needed on its shortcomings. The overall objective of this minireview is to highlight the opportunities from the development of dual-working polymeric materials, suitable for their use as GRDDS with improved GRT and capable of overcoming common drawbacks associated with conventional GRDDS. This could be achieved by a combination of properties such as buoyancy, swelling, porosity, and bioadhesion of the synthesized materials.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78163916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}