Mechanics of Time-Dependent Materials最新文献

筛选
英文 中文
The aging behavior of HDPE pipe bodies and butt-fusion welded joints: effects of thermal oxidative and hydrothermal accelerated aging 高密度聚乙烯管体和对熔焊接接头的老化行为:热氧化和水热加速老化的影响
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-25 DOI: 10.1007/s11043-024-09693-5
Ying-Chun Chen, Jie Yang, Yan-Feng Li, Rui Miao, Qiang Li, Xiao-li Fan
{"title":"The aging behavior of HDPE pipe bodies and butt-fusion welded joints: effects of thermal oxidative and hydrothermal accelerated aging","authors":"Ying-Chun Chen,&nbsp;Jie Yang,&nbsp;Yan-Feng Li,&nbsp;Rui Miao,&nbsp;Qiang Li,&nbsp;Xiao-li Fan","doi":"10.1007/s11043-024-09693-5","DOIUrl":"10.1007/s11043-024-09693-5","url":null,"abstract":"<div><p>We investigate the aging behavior of High-Density Polyethylene (HDPE) pipelines, specifically comparing the Pipe Body (PB) and Butt-Fusion Welded Joint (BFWJ) under thermal oxidative and hydrothermal accelerated aging conditions. Our results indicate that the performance disparity between PB and BFWJ diminishes as aging time increases. We also find that the specimen type affects the quantity of polyethylene fibers, with hydrothermal aging significantly affecting the cohesive force among these fibers in both PB and BFWJ. These findings on differential aging processes of PB and BFWJ contribute to a deeper understanding of HDPE pipeline durability and offer practical recommendations for mitigating degradation risks associated with these disparities. This research underscores the importance of considering specific aging behaviors in the maintenance and reliability assessment of HDPE pipeline systems used in energy transport, industrial, and agricultural applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"985 - 1002"},"PeriodicalIF":2.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-stage heat-transfer modeling of cylinder-cavity porous magnetoelastic bodies 圆柱腔多孔磁弹性体的两级传热建模
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-25 DOI: 10.1007/s11043-024-09691-7
Mohamed E. Elzayady, Ahmed E. Abouelregal, Faisal Alsharif, Hashem Althagafi, Mohammed Alsubhi, Yazeed Alhassan
{"title":"Two-stage heat-transfer modeling of cylinder-cavity porous magnetoelastic bodies","authors":"Mohamed E. Elzayady,&nbsp;Ahmed E. Abouelregal,&nbsp;Faisal Alsharif,&nbsp;Hashem Althagafi,&nbsp;Mohammed Alsubhi,&nbsp;Yazeed Alhassan","doi":"10.1007/s11043-024-09691-7","DOIUrl":"10.1007/s11043-024-09691-7","url":null,"abstract":"<div><p>This paper investigates the thermoelastic behavior of porous materials under magnetic fields using a dual-phase lag (DPL) model, with a specific focus on an unbounded porous body containing a cylindrical cavity. By applying the Laplace transform to address the time-dependent aspects of the governing equations, we investigate the effects of harmonically varying heat loads on the material’s porous–thermoelastic response. Numerical simulations provide insights into the distribution of excess pore water pressure, temperature, displacement, thermal stresses, and the magnetic field within the material. Results are presented through graphical analyses, facilitating a detailed comparison of porous–thermoelastic behaviors under different conditions. This approach not only validates the model’s accuracy but also enhances our understanding of porous materials’ responses to thermal and magnetic stimuli, offering valuable implications for their design and safety in engineering applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2819 - 2840"},"PeriodicalIF":2.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic mechanical response and functional mechanisms in rabbit pulmonary tissue 兔肺组织的动态机械响应和功能机制
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-24 DOI: 10.1007/s11043-024-09697-1
Yue Liu, Qiong Deng, Yongshuai Wang, Chenxu Zhang, Mingwei Chen, Zhi Hu, Yinggang Miao
{"title":"Dynamic mechanical response and functional mechanisms in rabbit pulmonary tissue","authors":"Yue Liu,&nbsp;Qiong Deng,&nbsp;Yongshuai Wang,&nbsp;Chenxu Zhang,&nbsp;Mingwei Chen,&nbsp;Zhi Hu,&nbsp;Yinggang Miao","doi":"10.1007/s11043-024-09697-1","DOIUrl":"10.1007/s11043-024-09697-1","url":null,"abstract":"<div><p>Lung tissue plays a crucial role in biological functions and exhibits significant sensitivity to mechanical loading. Its mechanical properties have garnered increased attention for their potential to guide human protection strategies against collisions and explosions. However, the behavior and underlying mechanisms remain largely undefined, particularly under dynamic loading conditions. In the present study, rabbit lung tissues were subjected to directional compression loadings, both parallel and perpendicular to the trachea. For accurate dynamic measurements, a modified Hopkinson pressure bar was employed. To minimize spike-like stress characteristics, annular specimens were utilized, and a polymethyl methacrylate bar served as the transmission tube, in conjunction with semiconductor strain gauges, to enhance the amplification of transmission signals. Experiments were meticulously conducted using the modified split Hopkinson pressure bar and an Instron machine, covering a strain rate range of 0.0005–3000 s<sup>−1</sup>. The results revealed a pronounced rate-dependence in the stress–strain curves of lung tissue, characterized by an initial linear elastic regime, a deformation plateau, and ultimate densification. A significant dependency on strain rate was observed, with the strength of tissue increasing a thousandfold from quasi-static to dynamic loading. Anisotropic behavior was evident under both loading directions. Furthermore, both strain rate dependency and anisotropic behavior became more pronounced beyond 0.3 strain under dynamic loading and 0.45 under quasi-static loading. Finally, potential mechanisms involving tissue fluid discharge and the mechanical characteristics of orientated collagen were proposed. These mechanisms were corroborated by staining techniques that demonstrated the predominant orientation of collagen in a specific direction within rabbit lung tissue.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2921 - 2936"},"PeriodicalIF":2.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140659383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the mechanical behavior and constitutive modeling of sandstone under acidic dry-wet cycles and dynamic loading 酸性干湿循环和动态加载下砂岩的力学行为特征和构成模型
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-23 DOI: 10.1007/s11043-024-09696-2
Pu Yuan, Xiaobo Zheng, Ningning Wei, Aobo Li
{"title":"Characterization of the mechanical behavior and constitutive modeling of sandstone under acidic dry-wet cycles and dynamic loading","authors":"Pu Yuan,&nbsp;Xiaobo Zheng,&nbsp;Ningning Wei,&nbsp;Aobo Li","doi":"10.1007/s11043-024-09696-2","DOIUrl":"10.1007/s11043-024-09696-2","url":null,"abstract":"<div><p>We investigate herein the role of acidic dry-wet cycles and dynamic loading on the mechanical stability of sandstone, which is crucial for managing closed and abandoned mines’ safety. Using a split Hopkinson pressure bar, we conducted dynamic compression tests on sandstone samples exposed to four acidic conditions (pH = 3, 5, 6.5, 7) and five dry-wet cycle frequencies (1, 5, 10, 20, 30) at an impact pressure of 0.70 MPa. Our findings reveal that the dynamic stress-strain response of sandstone entails compacting, elastic, plastic, and failure phases, with peak stress and elasticity decreasing as the acidity and cycle frequency increase. Analytical techniques, including EDS, XRD, and NMR, showed changes in composition and porosity, indicating reduced deterioration compared to untreated stone. Based on Weibull distribution and damage mechanics, a dynamic damage constitutive model was developed to accurately predict the sandstone’s behavior under these conditions. This model, validated by experimental data, effectively captures the dynamic stress-strain characteristics of sandstone, indicating the importance of understanding environmental degradation effects on rock stability in mining contexts.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2899 - 2919"},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of transverse isotropy on the creep behavior of bedded salt under confining pressures 横向各向同性对层状盐在约束压力下蠕变行为的影响
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-17 DOI: 10.1007/s11043-024-09695-3
Kanya Kraipru, Kittitep Fuenkajorn, Thanittha Thongprapha
{"title":"The effect of transverse isotropy on the creep behavior of bedded salt under confining pressures","authors":"Kanya Kraipru,&nbsp;Kittitep Fuenkajorn,&nbsp;Thanittha Thongprapha","doi":"10.1007/s11043-024-09695-3","DOIUrl":"10.1007/s11043-024-09695-3","url":null,"abstract":"<div><p>In this paper, we investigate the role of transverse isotropy on the creep behavior of bedded salt. We conducted a series of triaxial creep tests on prismatic specimens subjected to confining pressures (<span>(sigma _{3})</span>) of up to 24 MPa and a constant octahedral shear stress (<span>(tau _{mathrm{o}})</span>) of 9 MPa. The specimens were oriented with their bedding planes at various angles (<span>(beta )</span>) to the major principal axis to simulate transverse isotropic conditions. Our findings reveal that both instantaneous and creep deformations are most significant when <span>(beta = 0^{circ })</span>, decreasing progressively to a minimum at <span>(beta = 90^{circ })</span> across all confining pressures. The discrepancy in deformations between these intrinsic angles narrows with increasing <span>(sigma _{3})</span>. Creep deformations for intermediate angles (<span>(0^{circ} &lt; beta &lt; 90^{circ })</span>) follow the elliptical equations. Utilizing the Burgers creep model, we observed that the instantaneous, viscoelastic moduli, and viscoplastic coefficients escalate with <span>(beta )</span>. The degree of anisotropy declines sharply as confining pressures increase, reaching an isotropic state under <span>(tau _{mathrm{o}} = 9text{ MPa})</span> and <span>(sigma _{3})</span> around 40 MPa, beyond which transient creep ceases, indicating a transition to Maxwell-material behavior. Employing linear viscoelastic theory, we derived an equation for time-dependent deformation under varying octahedral shear stresses. This enables the formulation of governing equations for Burgers-model parameters, considering bedding plane orientations, loading durations, and the interactions between shear and confining stresses.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2879 - 2897"},"PeriodicalIF":2.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the strength deterioration of a coal pillar using a strain-softening time-dependent constitutive model 利用应变软化随时间变化的构成模型评估煤柱的强度劣化情况
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-16 DOI: 10.1007/s11043-024-09692-6
Prudhvi Raju Gadepaka,  Sonu, Ashok Jaiswal
{"title":"Assessment of the strength deterioration of a coal pillar using a strain-softening time-dependent constitutive model","authors":"Prudhvi Raju Gadepaka,&nbsp; Sonu,&nbsp;Ashok Jaiswal","doi":"10.1007/s11043-024-09692-6","DOIUrl":"10.1007/s11043-024-09692-6","url":null,"abstract":"<div><p>In this study, a time-dependent constitutive model of a coal pillar was developed using the Hoek–Brown strain-softening model, which is useful for studying the strength deterioration of a coal pillar over time. A database of 32 failed cases of coal pillars of different ages from the Witbank Coalfield has been utilized to deduce the strength parameters of the coal seam through back analysis. A three-dimensional finite-difference method (FDM) has been chosen to simulate the failed cases. The simulation results have been obtained in terms of pillar strength and FOS of the pillar concerning time. Based on the simulation results the life of the pillar is considered when FOS is nearly equal to 1. The appropriate strength parameters have been derived as peak strength parameters: <span>(m_{i} = 1.47)</span> and <span>(s_{i} = 0.01)</span>; residual parameters: <span>(m_{r} = 0.125)</span> and <span>(s_{r} = 0.00001)</span>; strength-reduction parameters: <span>(alpha = 0.04)</span>, <span>(beta = 200)</span> for a coal mass. 39 stable cases from the same coalfields (Witbank) have been considered to validate the strength parameters. The simulation results of all the stable cases were showing FOS &gt; 1. The proposed constitutive model is suitable for assessing a pillar’s time-dependent strength deterioration and creep behavior. The deterioration/yielding of the pillar is observed to be initiated from the skin/side, extending deeper into the pillar’s core with time and ultimately forming an hourglass shape. It is also observed that the FOS of the pillar decreases with time.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2841 - 2858"},"PeriodicalIF":2.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher-order heat conduction model in a rotating micropolar thermoelastic medium with moving heat source and electromagnetic field 带有移动热源和电磁场的旋转微极热弹性介质中的高阶热传导模型
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-12 DOI: 10.1007/s11043-024-09694-4
Sourov Roy, Abhijit Lahiri
{"title":"Higher-order heat conduction model in a rotating micropolar thermoelastic medium with moving heat source and electromagnetic field","authors":"Sourov Roy,&nbsp;Abhijit Lahiri","doi":"10.1007/s11043-024-09694-4","DOIUrl":"10.1007/s11043-024-09694-4","url":null,"abstract":"<div><p>This article investigates the influence of an electromagnetic field, angular velocity, and internal heat sources on two-dimensional thermoelasticity in a micropolar thermoelastic medium using a generalized model of higher-order (multi-phase-lag) heat conduction. The governing coupled partial differential equations are transformed through the normal mode analysis method. The eigenvalue approach is then applied to determine analytically the displacement components, stress components, couple stresses, and temperature distributions from the vector-matrix differential equation. The study’s findings are validated through boundary conditions, and graphical representations highlight the influence of angular velocity, magnetic field, and heat sources in this multi-phase-lag model. The graphical comparison of different thermoelastic models is presented, and the inclusion of tabular data enhances clarity, facilitating a comparative analysis of field variables.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2859 - 2877"},"PeriodicalIF":2.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photothermoelastic response due to Hall current and gravity effects in a hyperbolic two-temperature semiconducting medium with voids under a moving thermal load 移动热负荷下带有空隙的双曲双温半导体介质中霍尔电流和重力效应引起的光热弹性响应
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-08 DOI: 10.1007/s11043-024-09689-1
Mohit Kumar, Shilpa Chaudhary, Sandeep Singh Sheoran
{"title":"Photothermoelastic response due to Hall current and gravity effects in a hyperbolic two-temperature semiconducting medium with voids under a moving thermal load","authors":"Mohit Kumar, Shilpa Chaudhary, Sandeep Singh Sheoran","doi":"10.1007/s11043-024-09689-1","DOIUrl":"https://doi.org/10.1007/s11043-024-09689-1","url":null,"abstract":"<p>Photothermal transport process and voids in solids are important phenomena in a variety of engineering approaches and scientific disciplines. For this purpose, the photothermal theory is being utilized to study the coupling between elastic waves and plasma waves in a semiconducting medium with voids. The basic governing equations for photothermal waves are derived in the framework of hyperbolic two-temperature theory and Green–Lindsay model. Normal mode analysis method is used to obtain the physical field distributions under investigation. A moving thermal load is applied at the outer free surface of the medium to obtain the complete solution. Expressions are calculated numerically for silicon (Si) material and presented to observe the variations of the field quantities. The effects of various key parameters on the physical fields are also shown graphically. Special cases that are consistent with the earlier findings have been obtained. Although, numerous studies do exist on the deformation analysis in a photothermoelastic medium under different thermoelasticity theories. However, no research emphasizing thermodynamical analysis of the photothermal transport process in a hyperbolic two-temperature semiconducting medium with voids under the influence of gravity and Hall current has been carried out. This provides us a motivation to study the current research. Chemical engineering, geophysics, earthquake engineering, soil dynamics, high-energy particle physics, nuclear fusion, aeronautic biomechanics, bone mechanics, and petroleum industry are the major application areas of the photothermolelasticity theory.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"189 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of dynamic loading and temperature on NEPE propellant: damage and ignition analysis 动态加载和温度对 NEPE 推进剂的影响:损伤和点火分析
IF 2.5 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-04-02 DOI: 10.1007/s11043-024-09684-6
Zongtao Guo, Jinsheng Xu, Xiong Chen, Tingyu Wang, Jiaming Liu, Hao Zhang, Yulin Chen, Qixuan Song
{"title":"Effects of dynamic loading and temperature on NEPE propellant: damage and ignition analysis","authors":"Zongtao Guo, Jinsheng Xu, Xiong Chen, Tingyu Wang, Jiaming Liu, Hao Zhang, Yulin Chen, Qixuan Song","doi":"10.1007/s11043-024-09684-6","DOIUrl":"https://doi.org/10.1007/s11043-024-09684-6","url":null,"abstract":"<p>We investigate herein the thermo-mechanical behavior of nitrate ester plasticized polyether (NEPE) propellants under dynamic, nonshock loading scenarios, such as impacts and drops, which are vital for assessing the safety of solid rocket motors. Using a split Hopkinson pressure bar (SHPB) apparatus, we performed dynamic loading tests on NEPE propellant samples at high strain rates (4000, 5100, and 6000 s<sup>−1</sup>) and various temperatures (228, 298, and 318 K). High-speed cameras captured the deformation, fracture, ignition, and combustion stages under these conditions. Results indicate that both the mechanical properties and ignition behavior of the propellant are significantly affected by strain rate and temperature. The propellant demonstrated nonlinear elastic deformation, with both ultimate stress and strain increasing with strain rate and decreasing with temperature. During dynamic loading, samples underwent stages of uniform and nonuniform deformation, fragmentation, and for some, ignition, which was more prompt and intense at higher strain rates and temperatures. High-speed footage, along with optical and scanning electron microscopy, revealed friction among ammonium perchlorate particles as the primary ignition catalyst, presenting as shear flow on a macroscopic level. This investigation underscores the complex interplay between strain rate, temperature, and mechanical integrity in the safety and performance of high-energy propellants.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"9 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the thermal behavior of functionally graded media with a spherical gap: rectified sine wave heating via fourth-order Moore–Gibson–Thompson model 带有球形间隙的功能分级介质热行为建模:通过四阶摩尔-吉布森-汤普森模型进行正弦波整流加热
IF 2.1 4区 材料科学
Mechanics of Time-Dependent Materials Pub Date : 2024-03-28 DOI: 10.1007/s11043-024-09688-2
Ahmed E. Abouelregal, Marin Marin, Hind A. Alharbi, Khaled J. A. Alrouili
{"title":"Modeling the thermal behavior of functionally graded media with a spherical gap: rectified sine wave heating via fourth-order Moore–Gibson–Thompson model","authors":"Ahmed E. Abouelregal,&nbsp;Marin Marin,&nbsp;Hind A. Alharbi,&nbsp;Khaled J. A. Alrouili","doi":"10.1007/s11043-024-09688-2","DOIUrl":"10.1007/s11043-024-09688-2","url":null,"abstract":"<div><p>The main objective of this work is to introduce a new thermal conductivity model that can be utilized to solve the infinite thermal diffusion problem in the Green and Naghdi type III model. This proposed model incorporates two key concepts: the fourth-order Moore–Gibson–Thompson (MGT) concept and thermal relaxation. By incorporating higher-order terms, the fourth-order MGT model provides a more accurate representation of the thermal behavior of the material. The thermal behavior of a functionally graded (FG) infinite medium containing a spherical gap is then studied using this model. A rectified sine wave heating system is applied to the traction-free gap surface. Power functions are utilized to model the uniform radial variation of the physical properties of the FG medium. The physical variables under investigation were meticulously examined, considering the impacts of heterogeneity, relaxation duration, and thermal frequency. These variables were estimated numerically using a suitable technique for Laplace transformations. Through this work, the expected outcomes may be able to make a significant contribution to the field of thermoelastic analysis in advanced and FG materials, as well as to engineering applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"681 - 707"},"PeriodicalIF":2.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信