AAPS PharmSciTech最新文献

筛选
英文 中文
Amorphous Solid Dispersions of Glycyrrhetinic Acid: Using Soluplus, PVP, and PVPVA as the Polymer Matrix to Enhance Solubility, Bioavailability, and Stability 甘草次酸的无定形固体分散体:使用 Soluplus、PVP 和 PVPVA 作为聚合物基质提高溶解度、生物利用度和稳定性
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-21 DOI: 10.1208/s12249-024-03007-1
Meng-yu Zhao, Xian-bao Shi, Jin-hua Chang, Ru-xing Wang, Jian-yu Zhou, Pei Liu
{"title":"Amorphous Solid Dispersions of Glycyrrhetinic Acid: Using Soluplus, PVP, and PVPVA as the Polymer Matrix to Enhance Solubility, Bioavailability, and Stability","authors":"Meng-yu Zhao,&nbsp;Xian-bao Shi,&nbsp;Jin-hua Chang,&nbsp;Ru-xing Wang,&nbsp;Jian-yu Zhou,&nbsp;Pei Liu","doi":"10.1208/s12249-024-03007-1","DOIUrl":"10.1208/s12249-024-03007-1","url":null,"abstract":"<div><p>Glycyrrhetinic acid (GA) possesses various pharmacological effects, including anti-inflammatory, anti-tumor, and anti-viral properties. However, its clinical application is limited by poor solubility and low oral bioavailability. Polymers play a crucial role in pharmaceutical formulations, particularly as matrices in excipients to enhance the solubility, bioavailability, and stability of active pharmaceutical ingredients. The amorphous solid dispersions (ASDs) of GA were prepared with three different polymers (i.e., GA-S-ASD, GA-VA64-ASD, and GA-K30-ASD). The ASDs were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR spectroscopy), molecular docking, and contact angle measurement. Pharmacokinetics were evaluated in Beagle dogs, and long-term stability was examined. The solubility of GA increased with the rising weight of the polymer, and the optimal drug-to-carrier ratio was 1:5. In all ASDs, GA was amorphous, thus suggesting that a hydrogen bonding must have formed between GA and the polymers. The molecular docking showed that the binding energy was the highest and the hydrogen bonding was the strongest between GA and Soluplus. The dissolution of the ASDs was primarily driven by carrier-controlled dissolution, and there was minor influence from diffusion-limited release in the case of GA-S-ASD. The three ASDs significantly improved the bioavailability of GA. However, only GA-S-ASD passed the accelerated stability test. In the case of GA-VA64-ASD and GA-K30-ASD, due to serious moisture absorption, the originally fluffy ASDs became gels, and recrystallization occurred. Overall, GA-S-ASD presents promising potential for pharmaceutical applications due to its superior solubility, bioavailability, and stability.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Therapy: Towards a New Era of Medicine
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-19 DOI: 10.1208/s12249-024-03010-6
Mokshit Bhagat, Raj Kamal, Jyoti Sharma, Kirandeep Kaur, Amit Sharma, Gurjeet Singh Thakur, Rohit Bhatia, Ankit Awasthi
{"title":"Gene Therapy: Towards a New Era of Medicine","authors":"Mokshit Bhagat,&nbsp;Raj Kamal,&nbsp;Jyoti Sharma,&nbsp;Kirandeep Kaur,&nbsp;Amit Sharma,&nbsp;Gurjeet Singh Thakur,&nbsp;Rohit Bhatia,&nbsp;Ankit Awasthi","doi":"10.1208/s12249-024-03010-6","DOIUrl":"10.1208/s12249-024-03010-6","url":null,"abstract":"<div><p>Over the past years, many significant advances have been made in the field of gene therapy and shown promising results in clinical trials conducted. Gene therapy aims at modifying or replacing a defective, inefficient, or nonfunctional gene with a healthy, functional gene by administration of genome material into the cell to cure genetic diseases. Various methods have been devised to do this by using several viral and non-viral vectors which are either administered by <i>in vivo</i> or <i>ex vivo</i> technique. Viral vectors are best suitable for this therapy due to their potential to invade cells and deliver their genetic material whereas non-viral vectors are less efficient than viral vectors but possess some advantages such as less immunogenic response and large gene carrying capacity. Recent advances in biotechnology such as CRISPR-Cas9 mediated genome engineering and Cancer treatment with Chimeric antigen receptor (CAR) T-cell therapy are addressed in this review. This review article also delves into some recent research studies, gene therapy trials, and its applications, laying out future hopes for gene therapy in the treatment of various diseases namely haemophilia, Muscular dystrophy, SCID, Sickle cell disease, Familial Hypercholesterolemia, Cystic Fibrosis. Additionally, it also includes various nanoformulations and clinical trial data related to gene therapy.</p><h3>Graphical Abstract</h3><p>Gene therapy is a technique that aims at altering or replacing a defective gene with a healthy functional gene by administration of genetic material into the cell. The Ex-vivo technique involves transfer of genetic material by modifying the cell outside the body and transplanting it back into a patient. In the In-vivo technique genetic material is directly transferred into the patient’s body by using a liposome or viral vector.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of Biopredictive Dissolution and Bioequivalence Safe Space Using the Physiologically Based Biopharmaceutics Modeling for Tacrolimus Extended-Release Capsules 利用基于生理学的生物药剂学模型为他克莫司缓释胶囊建立生物预测溶解度和生物等效性安全空间
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-17 DOI: 10.1208/s12249-024-03006-2
Fulin Bi, Tong Yuan, Baohong Zhang, Jixia Li, Yan Lin, Jin Yang
{"title":"Establishment of Biopredictive Dissolution and Bioequivalence Safe Space Using the Physiologically Based Biopharmaceutics Modeling for Tacrolimus Extended-Release Capsules","authors":"Fulin Bi,&nbsp;Tong Yuan,&nbsp;Baohong Zhang,&nbsp;Jixia Li,&nbsp;Yan Lin,&nbsp;Jin Yang","doi":"10.1208/s12249-024-03006-2","DOIUrl":"10.1208/s12249-024-03006-2","url":null,"abstract":"<div><p>A slight variation in <i>in vivo</i> exposure for tacrolimus extended-release (ER) capsules, which have a narrow therapeutic index (NTI), significantly affects the pharmacodynamics of the drug. Generic drug bioequivalence (BE) standards are stricter, necessitating accurate assessment of the rate and extent of drug release. Therefore, an <i>in vitro</i> dissolution method with high <i>in vivo</i> predictive power is crucial for developing generic drugs. In this study, physiologically based biopharmaceutics modeling (PBBM) for 5 mg tacrolimus ER capsules was developed and validated. The reference and non-BE test formulations were assessed using the Flow-Through Cell apparatus (USP IV) with biorelevant media to establish a biopredictive dissolution method. Using PBBM, virtual bioequivalence trials with virtual batches were conducted to propose a BE safe space. These criteria can identify formulations that pass the internal quality control test but are likely non-BE. This study highlights the benefits of developing biopredictive dissolution methods that are based on biorelevant dissolution. The PBBM, constructed by integrating various drug parameters, combined with the developed biopredictive dissolution methods, is a convenient approach for BE evaluation of NTI drugs and a practical tool for developing new drugs.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation, Development, and Characterization of AMB-Based Subcutaneous Implants using PCL and PLGA via Hot-Melt Extrusion
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-17 DOI: 10.1208/s12249-024-03004-4
Kshitij Chitnis, Nagarjuna Narala, Sateesh Kumar Vemula, Sagar Narala, Sivaram Munnangi, Michael A. Repka
{"title":"Formulation, Development, and Characterization of AMB-Based Subcutaneous Implants using PCL and PLGA via Hot-Melt Extrusion","authors":"Kshitij Chitnis,&nbsp;Nagarjuna Narala,&nbsp;Sateesh Kumar Vemula,&nbsp;Sagar Narala,&nbsp;Sivaram Munnangi,&nbsp;Michael A. Repka","doi":"10.1208/s12249-024-03004-4","DOIUrl":"10.1208/s12249-024-03004-4","url":null,"abstract":"<div><p>The hot-melt extrusion process is currently considered a prominent manufacturing technique in the pharmaceutical industry. The present study is intended to develop amlodipine besylate (AMB)-loaded subcutaneous implants to reduce the frequency of administration, thus improving patient compliance during hypertension management. AMB subcutaneous implants were prepared using continuous hot-melt extrusion technology using poly(caprolactone) and poly(lactic-co-glycolic acid) with dimensions of 3.70 cm (length) by 2.00 mm (diameter). The implants were characterized for thermal characteristics, drug-excipient incompatibilities, surface morphology, fracturability, <i>in vitro</i> drug release, and stability studies. Differential scanning calorimetry study confirmed the drug's crystalline state within the fabricated implants, while textural analysis demonstrated good fracturability in the lead formulation. Scanning electron microscopy revealed the smooth surface morphology of the lead subcutaneous implant. The lead formulation showed an extended drug release profile over 30 days (~ 2.25 mg per day) and followed zero-order release kinetics (R<sup>2</sup> value to 0.9999) with a mean dissolution time of 14.96 days. The lead formulation remained stable for 30 days at accelerated stability conditions of 40°C and 75% relative humidity. In conclusion, developing hot-melt extruded implants could be an alternative to the conventional amlodipine besylate (AMB) formulation.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-03004-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-friendly Nanostructured Liquid Crystals Loaded with Clove Oil as a Sustainable Approach for Managing Infected Burn Wounds 含丁香油的生态友好型纳米结构液晶是治疗烧伤感染伤口的一种可持续方法
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-17 DOI: 10.1208/s12249-024-03009-z
Sally A. EL-Zahaby, Ming Ming Wen, Ibrahim A. Abdelwahab, Yasmine M. Shahine, Sherien A. Abdelhady, Gihan A. Elbatouti
{"title":"Eco-friendly Nanostructured Liquid Crystals Loaded with Clove Oil as a Sustainable Approach for Managing Infected Burn Wounds","authors":"Sally A. EL-Zahaby,&nbsp;Ming Ming Wen,&nbsp;Ibrahim A. Abdelwahab,&nbsp;Yasmine M. Shahine,&nbsp;Sherien A. Abdelhady,&nbsp;Gihan A. Elbatouti","doi":"10.1208/s12249-024-03009-z","DOIUrl":"10.1208/s12249-024-03009-z","url":null,"abstract":"<p>Infections are a leading complication in patients with burns. Effective antimicrobial treatment with regenerative tissue healing is required. Utilizing components derived from plant origin such as natural oils as a sustainable and eco-friendly approach for managing disease is highly required nowadays. The aim of the current study is to assess the antibacterial and wound-healing activity of clove oil and its novel eco-friendly nanostructured liquid crystals (Eco-friendly-NLCs) formulation in treating infected burn wounds. A 2<sup>3</sup> full factorial design was used to optimize the Eco-friendly-NLCs. Clove oil and its novel nano-formulation were characterized and subjected to <i>in vitro</i> and <i>in vivo</i> assessments for their efficacy. Twenty rats were used experimentally. The optimum Eco-friendly-NLCs had 189.2 ± 1.9 nm, -22.8 ± 0.7 mV and 0.308 as values for particle size, zeta potential and polydispersity index. Transmission electron microscope images showed discrete spherical shape NLCs with no aggregations. The microbiological and pharmacological results revealed a superior efficacy regarding clove loaded Eco-friendly-NLCs in inhibiting bacterial growth (inhibition zone of 38 mm), significantly reducing inflammatory biomarker levels (<i>p</i> &lt; 0.001), promoting angiogenesis and prompt wound healing. The Eco-friendly-NLCs loaded with clove oil could be considered as a promising formulation providing anti-inflammatory, anti-bacterial and wound healing effects.</p>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-03009-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Ocular Modelling and Simulations: Key Considerations and Case Studies
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-17 DOI: 10.1208/s12249-024-03001-7
Mohammed Shareef Khan, Aditya Murthy, Tausif Ahmed
{"title":"Advancements in Ocular Modelling and Simulations: Key Considerations and Case Studies","authors":"Mohammed Shareef Khan,&nbsp;Aditya Murthy,&nbsp;Tausif Ahmed","doi":"10.1208/s12249-024-03001-7","DOIUrl":"10.1208/s12249-024-03001-7","url":null,"abstract":"<div><p>This review paper discusses the key aspects of ocular biopharmaceutics, with emphasis on the crucial role played by ocular compartmental modelling and simulation in deciphering physiological conditions related to various eye diseases. It describes eye’s intricate structure and function and the need for precise and targeted drug delivery systems to address prevalent eye conditions. The review categorizes and discusses various formulations employed in ocular drug delivery, delineating their respective advantages and limitations. Additionally, it probes the challenges inherent in diverse routes of drug administration for ocular therapies and provides insights into the complexities of achieving optimal drug concentrations at the target site within the eye. The central theme of this work is the ocular compartmental modelling and simulations. Hence, this works discusses on the nuanced understanding of physiological conditions within the eye, drug distribution, drug release kinetics, and key considerations for ocular compartmental modelling and simulations. By combining information from various sources, this review aims to serve as a comprehensive reference for researchers, clinicians, and pharmaceutical developers. It covers the multifaceted landscape of ocular biopharmaceutics and the transformative impact of modelling and simulation in optimizing ocular drug delivery strategies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contemplating Novel W/O Emulsion Based Gel for Anti-Psoriatic Activity of Tofacitinib in Imiquimod-Induced Balb/C Mice Model
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-13 DOI: 10.1208/s12249-024-03003-5
Ashwini Aratwar, Indrani Maji, Shrilekha Chilvery, Srushti Mahajan, Mayur Aalhate, Ujala Gupta, Chandraiah Godugu, Pankaj Kumar Singh
{"title":"Contemplating Novel W/O Emulsion Based Gel for Anti-Psoriatic Activity of Tofacitinib in Imiquimod-Induced Balb/C Mice Model","authors":"Ashwini Aratwar,&nbsp;Indrani Maji,&nbsp;Shrilekha Chilvery,&nbsp;Srushti Mahajan,&nbsp;Mayur Aalhate,&nbsp;Ujala Gupta,&nbsp;Chandraiah Godugu,&nbsp;Pankaj Kumar Singh","doi":"10.1208/s12249-024-03003-5","DOIUrl":"10.1208/s12249-024-03003-5","url":null,"abstract":"<div><p>Tyrosine kinase inhibitors like tofacitinib (TCB), are excellent examples of small molecular compounds that have demonstrated success in treating psoriasis. The current study aims to improve the efficacy of TCB and reduce its systemic adverse effects by developing a topical w/o emulgel formulation that will ameliorate the anti-psoriatic activity in a model of Imiquimod-induced BALB/c mice. In order to create w/o emulgel, the TCB was incorporated into the w/o emulsion using Peppermint oil, Transcutol P<sup>®</sup>, and PEG-200 followed by converted into a gel by adding Carbopol 940. The final formulation was optimized by applying a 3-level, 3-factor Box-Behnken Design (BBD). The optimized formulation showed a viscosity of 560606.6 ± 80.8 cps (560 Pa.S), and firmness of 356 ± 48 g, and that was within the acceptable range with respect to the marketed emulgel preparation available for topical application. The developed TCB-emulgel also exhibited a controlled release profile, with 68.26 ± 8.33% release of TCB over 24 h and a 5-fold greater skin permeation as compared to normal TCB-gel. Apart from that, the application of TCB-emulgel on the diseased model results in a 3.3-times reduction in the PASI (Psoriasis Area Severity Index) scoring. Lastly, the epidermal reduction in histopathological evaluation, along with the reduction in TNF-α and Ki-67 levels observed in immunostaining, ensures the enhanced anti-psoriatic effect of the developed TCB-emulgel in comparison to the marketed product. To put it briefly, the findings of the study and the therapeutic effectiveness of the developed TCB-emulgel provide a strong basis for the clinical management of psoriasis in the future. </p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Bench to Bedside: ROS-Responsive Nanocarriers in Cancer Therapy
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-13 DOI: 10.1208/s12249-024-03011-5
Abhishek Chauhan, Raj Kamal, Rohit Bhaita, Gurjeet Singh Thakur, Ankit Awasthi
{"title":"From Bench to Bedside: ROS-Responsive Nanocarriers in Cancer Therapy","authors":"Abhishek Chauhan,&nbsp;Raj Kamal,&nbsp;Rohit Bhaita,&nbsp;Gurjeet Singh Thakur,&nbsp;Ankit Awasthi","doi":"10.1208/s12249-024-03011-5","DOIUrl":"10.1208/s12249-024-03011-5","url":null,"abstract":"<div><p>Reactive oxygen species (ROS) play a dual role in cancer, acting as both signaling molecules that promote tumour growth and as agents that can inhibit tumour progression through cytotoxic effects. In cancer therapy, ROS-responsive drug delivery systems take advantage of the elevated ROS levels found in tumors compared to healthy tissues. These systems are engineered to release drugs precisely in response to increased ROS levels in tumour cells, allowing targeted and controlled treatment, minimizing side effects, and enhancing therapeutic outcomes. ROS generation in cancer cells is linked to metabolic changes, mitochondrial dysfunction, and oncogenic signaling, leading to increased oxidative stress. Tumour cells manage this by upregulating antioxidant defenses to prevent ROS from reaching harmful levels. This balance between ROS production and neutralization is critical for cancer cell survival, making ROS both a challenge and an opportunity for targeted therapies. ROS also connect inflammation and cancer. Chronic inflammation leads to elevated ROS, which can damage DNA and proteins, promoting mutations and cancer development. Additionally, ROS contribute to protein degradation, affecting essential cellular functions. Therapeutic strategies targeting ROS aim to either increase ROS beyond tolerable levels for cancer cells or inhibit their antioxidant defenses. Nanocarriers responsive to ROS show great potential in improving the precision of cancer treatments by releasing drugs specifically in high ROS environments, like tumors. This review discusses the mechanisms of ROS in cancer, its role in inflammation and protein degradation, and the advances in ROS-targeted nanocarrier therapies across different cancer types.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mupirocin-Doped α-Cellulose Nanopaper for Wound Dressing: Development, In Vitro Characterization and Antimicrobial Studies
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-13 DOI: 10.1208/s12249-024-03013-3
Nivedita Pant, Sarika Wairkar
{"title":"Mupirocin-Doped α-Cellulose Nanopaper for Wound Dressing: Development, In Vitro Characterization and Antimicrobial Studies","authors":"Nivedita Pant,&nbsp;Sarika Wairkar","doi":"10.1208/s12249-024-03013-3","DOIUrl":"10.1208/s12249-024-03013-3","url":null,"abstract":"<div><p>This research aimed to develop a mupirocin-doped α-cellulose nanopaper (MDAC-NP) as a wound dressing to accelerate wound healing while limiting localized bacterial growth. The α-cellulose nanofibrils suspension was prepared by ultrasonication followed by microfluidization and subsequently doped with 0.05% w/v mupirocin to prepare nanopaper (MDAC-NP-A). The optimized batch of MDAC-NP had a porosity of 47.46 ± 0.60%, a thickness of 30 μm and a tensile strength of 0.113 MPa. The transmission electron microscopy images revealed long, slender, intertwined nanofibrillar structures and the scanning electron microscopy confirmed stable lamellar structures with tight nanofibrillar networks, giving them translucency. MDAC-NP-A had an excellent water vapor transmission rate of 2963 ± 10.26 g/m<sup>2</sup>/day, providing an optimal moist environment locally to promote wound healing. The mupirocin inclusion in the nanopapers was corroborated by the Fourier transform infrared spectroscopy and its crystallinity by X-ray diffraction, and differential scanning calorimetry results. The 100% drug release, was observed at 12 h from optimized MDAC-NP-A with a controlled release pattern. The MDAC-NP showed better antimicrobial activity, against <i>S. aureus</i> (41 mm) than <i>E. coli</i> (25 mm) and <i>P. aeruginosa</i> (17 mm) and was found to be better than marketed ointment. Thus, mupirocin-doped α-cellulose nanopapers emerge as a potential wound dressing for treating primary and secondary skin infections caused by external wounds.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesogenic Architectures for Advanced Drug Delivery: Interrogating Lyotropic and Thermotropic Liquid Crystals
IF 3.4 4区 医学
AAPS PharmSciTech Pub Date : 2024-12-05 DOI: 10.1208/s12249-024-02985-6
Induja Govindan, Angeeta Paul, Annamalai Rama, Anjana A. Kailas, K. A. Abutwaibe, Thamizharasan Annadurai, Anup Naha
{"title":"Mesogenic Architectures for Advanced Drug Delivery: Interrogating Lyotropic and Thermotropic Liquid Crystals","authors":"Induja Govindan,&nbsp;Angeeta Paul,&nbsp;Annamalai Rama,&nbsp;Anjana A. Kailas,&nbsp;K. A. Abutwaibe,&nbsp;Thamizharasan Annadurai,&nbsp;Anup Naha","doi":"10.1208/s12249-024-02985-6","DOIUrl":"10.1208/s12249-024-02985-6","url":null,"abstract":"<div><p>The possibility of precisely regulating and targeting drug release with mesophase or Liquid crystal drug delivery systems has drawn much attention recently. This review offers a thorough investigation of liquid crystal drug delivery systems with an emphasis on their mesogenic architecture. It describes the various liquid crystal forms such as thermotropic and lyotropic liquid crystals and their applicability in advanced drug delivery. Liquid crystals are used as excellent carriers due to their distinctive characteristics, such as stimuli-responsive drug delivery and sustained release patterns. Comprehending the materials that form mesophase provides insight into their distinct physiochemical characteristics and their use in drug delivery. This review highlights the important role lyotropic and thermotropic liquid crystals play in drug delivery, underscoring their considerable potential. The transition of thermotropic liquid crystals from their conventional technological applications to drug delivery has been studied. Nonetheless, a few challenges still need to be addressed, including formulation strategy refinement, regulating release rates, maximising the loading of hydrophilic drugs, and storage stability. In the pharmaceutical field, addressing these issues will open the door to a revolutionary paradigm that will revolutionise therapeutic outcomes and improve patient care.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02985-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信