Acta Neuropathologica Communications最新文献

筛选
英文 中文
Germline loss-of-function variant in the E3 ubiquitin ligase TRAF2 in a young adult patient with medulloblastoma: a case report. 一名年轻成年髓母细胞瘤患者E3泛素连接酶TRAF2的种系功能丧失变异:一例报告。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-20 DOI: 10.1186/s40478-024-01896-8
Josh N Vo, Andrea Franson, Sebastian M Waszak, Yi-Mi Wu, Nicole Becker, Arul M Chinnaiyan, Dan R Robinson
{"title":"Germline loss-of-function variant in the E3 ubiquitin ligase TRAF2 in a young adult patient with medulloblastoma: a case report.","authors":"Josh N Vo, Andrea Franson, Sebastian M Waszak, Yi-Mi Wu, Nicole Becker, Arul M Chinnaiyan, Dan R Robinson","doi":"10.1186/s40478-024-01896-8","DOIUrl":"10.1186/s40478-024-01896-8","url":null,"abstract":"<p><p>We identified a rare heterozygous germline loss-of-function variant in the tumor necrosis factor receptor-associated factor 2 (TRAF2) in a young adult patient diagnosed with medulloblastoma. This variant is located within the TRAF-C domain of the E3 ubiquitin ligase protein and is predicted to diminish the binding affinity of TRAF2 to upstream receptors and associated adaptor proteins. Integrative genomics revealed a biallelic loss of TRAF2 via partial copy-neutral loss-of-heterozygosity of 9q in the medulloblastoma genome. We further performed comparative analysis with an in-house cohort of 20 medulloblastomas sequenced using the same platform, revealing an atypical molecular profile of the TRAF2-associated medulloblastoma. Our research adds to the expanding catalog of genetic tumor syndromes that increase the susceptibility of carriers to MB.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"195"},"PeriodicalIF":6.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paradoxical attenuation of early amyloid-induced cognitive impairment and synaptic plasticity in an aged APP/Tau bigenic rat model. 老年APP/Tau基因大鼠模型中早期淀粉样蛋白诱导的认知障碍和突触可塑性的矛盾衰减。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-20 DOI: 10.1186/s40478-024-01901-0
Joshua T Emmerson, Sonia Do Carmo, Agustina Lavagna, Chunwei Huang, Tak Pan Wong, Julio C Martinez-Trujillo, A Claudio Cuello
{"title":"Paradoxical attenuation of early amyloid-induced cognitive impairment and synaptic plasticity in an aged APP/Tau bigenic rat model.","authors":"Joshua T Emmerson, Sonia Do Carmo, Agustina Lavagna, Chunwei Huang, Tak Pan Wong, Julio C Martinez-Trujillo, A Claudio Cuello","doi":"10.1186/s40478-024-01901-0","DOIUrl":"10.1186/s40478-024-01901-0","url":null,"abstract":"<p><p>The combination of amyloid beta and tau pathologies leads to tau-mediated neurodegeneration in Alzheimer's disease. However, the relative contributions of amyloid beta and tau peptide accumulation to the manifestation of the pathological phenotype in the early stages, before the overt deposition of plaques and tangles, are still unclear. We investigated the longitudinal pathological effects of combining human-like amyloidosis and tauopathy in a novel transgenic rat model, coded McGill-R-APPxhTau. We compared the effects of individual and combined amyloidosis and tauopathy in transgenic rats by assessing the spatiotemporal progression of Alzheimer's-like amyloid and tau pathologies using biochemical and immunohistochemical methods. Extensive behavioral testing for learning and memory was also conducted to evaluate cognitive decline. Additionally, we investigated brain inflammation, neuronal cell loss, as well as synaptic plasticity through acute brain slice electrophysiological recordings and Western blotting. Evaluation of Alzheimer's-like amyloidosis and tauopathy, at the initial stages, unexpectedly revealed that the combination of amyloid pathology with the initial increment in phosphorylated tau exerted a paradoxical corrective effect on amyloid-induced cognitive impairments and led to a compensatory-like restoration of synaptic plasticity as revealed by electrophysiological evidence, compared to monogenic transgenic rats with amyloidosis or tauopathy. We discovered elevated CREB phosphorylation and increased expression of postsynaptic proteins as a tentative explanation for the improved hippocampal synaptic plasticity. However, this tau-induced protective effect on synaptic function was transient. As anticipated, at more advanced stages, the APPxhTau bigenic rats exhibited aggravated tau and amyloid pathologies, cognitive decline, increased neuroinflammation, and tau-driven neuronal loss compared to monogenic rat models of Alzheimer's-like amyloid and tau pathologies. The present findings propose that the early accumulation of phosphorylated tau may have a transient protective impact on the evolving amyloid pathology-derived synaptic impairments.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"193"},"PeriodicalIF":6.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pTau pathology in the retina of TAU58 mice: association with ganglion cell degeneration and implications on seeding and propagation of pTau from human brain lysates. TAU58小鼠视网膜中的pTau病理:与神经节细胞变性的关系以及人脑裂解物中pTau的播种和繁殖的意义
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-20 DOI: 10.1186/s40478-024-01907-8
Grzegorz Walkiewicz, Alicja Ronisz, Simona Ospitalieri, Grigoria Tsaka, Sandra O Tomé, Rik Vandenberghe, Christine A F von Arnim, Frederic Rousseau, Joost Schymkowitz, Lies De Groef, Dietmar Rudolf Thal
{"title":"pTau pathology in the retina of TAU58 mice: association with ganglion cell degeneration and implications on seeding and propagation of pTau from human brain lysates.","authors":"Grzegorz Walkiewicz, Alicja Ronisz, Simona Ospitalieri, Grigoria Tsaka, Sandra O Tomé, Rik Vandenberghe, Christine A F von Arnim, Frederic Rousseau, Joost Schymkowitz, Lies De Groef, Dietmar Rudolf Thal","doi":"10.1186/s40478-024-01907-8","DOIUrl":"10.1186/s40478-024-01907-8","url":null,"abstract":"<p><p>The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons. To address these questions, we (1) characterized pTau pathology in the retina of TAU58 mice, (2) determined the impact of pTau pathology on retinal ganglion cell density, and (3) used this mouse model to test whether brain lysates from AD and/or non-AD control cases induce seeding in the retina and/or propagation into the brain. TAU58 mice developed retinal pTau pathology at 6 months of age, increasing in severity and extent with age. TAU58 mice showed reduced retinal ganglion cell density compared to wild-type mice, which declined with age and pTau pathology progression. Brain lysates from non-AD Braak neurofibrillary tangle (NFT) stage I controls increased retinal pTau pathology after subretinal injection compared to phosphate-buffered saline (PBS) but did not accelerate pTau pathology in the brain. In contrast, subretinally injected AD brain lysates accelerated pTau pathology in the retina and the contralateral superior colliculus. Subretinal injection of AD brain lysates, but not of non-AD brain, induced in this context a neuroinflammatory response in the retina and in the contralateral primary visual cortex. These results lead to the following conclusions: (1) Brain lysates from AD and non-AD sources can accelerate tauopathy within the retina. (2) The anterograde propagation of pTau pathology from the retina to the brain can be triggered by subretinal injections of AD brain lysates. (3) Such subretinal injections also provoke a neuroinflammatory response in both the retina and the visual cortex. (4) The accumulation of retinal pTau is associated with the degeneration of the involved ganglion cells, indicating that retinal tauopathy might contribute to vision impairment in the elderly and underscore the retina's potential role in spreading tau pathology to the brain.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"194"},"PeriodicalIF":6.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relevance of muscle biopsies in the neonatal and early infantile period: a 52 years retrospective study in the gene-sequencing era. 新生儿和婴儿早期肌肉活检的相关性:基因测序时代52年的回顾性研究。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-20 DOI: 10.1186/s40478-024-01882-0
Mai Thao Bui, Gorka Fernández-Eulate, Teresinha Evangelista, Emmanuelle Lacène, Guy Brochier, Clémence Labasse, Angéline Madelaine, Anaïs Chanut, Maud Beuvin, Favienne Borsato-Levy, Valérie Biancalana, Giulia Barcia, Pascale De Lonlay, Jocelyn Laporte, Johann Böhm, Norma Beatriz Romero
{"title":"Relevance of muscle biopsies in the neonatal and early infantile period: a 52 years retrospective study in the gene-sequencing era.","authors":"Mai Thao Bui, Gorka Fernández-Eulate, Teresinha Evangelista, Emmanuelle Lacène, Guy Brochier, Clémence Labasse, Angéline Madelaine, Anaïs Chanut, Maud Beuvin, Favienne Borsato-Levy, Valérie Biancalana, Giulia Barcia, Pascale De Lonlay, Jocelyn Laporte, Johann Böhm, Norma Beatriz Romero","doi":"10.1186/s40478-024-01882-0","DOIUrl":"10.1186/s40478-024-01882-0","url":null,"abstract":"<p><p>Neuromuscular disorders (NMD) with neonatal or early infantile onset are usually severe and differ in symptoms, complications, and treatment options. The establishment of a diagnosis relies on the combination of clinical examination, morphological analyses of muscle biopsies, and genetic investigations. Here, we re-evaluated and classified a unique collection of 535 muscle biopsies from NMD infants aged 0-6 months examined over a period of 52 years. We aimed to assess the importance and contribution of morphological muscle biopsy analyses for the establishment of a precise and accurate molecular diagnosis. Altogether, 82% of the biopsies showed typical structural myofiber anomalies highly suggestive of specific NMD classes (congenital myopathies, metabolic myopathies, lower motor neuron (LMN) and neuromuscular junction (NMJ) disorders, muscular dystrophies, inflammatory myopathies), while the remaining 18% showed no or only non-specific histological abnormalities. The diagnostic success rate differed among the NMD classes and was particularly high for congenital myopathies as illustrated by the identification of causative genes in 61% of cases. This is essentially due to the presence of characteristic histopathological hallmarks on biopsies visible by light or electron microscopy often pointing to specific genes. In contrast, metabolic myopathies commonly displayed non-specific features on muscle sections, led to the identification of causative genes in only 19% of the patients, and typically required additional enzymatic tests to establish a more precise diagnosis. The evolution of sequencing technologies fundamentally improved molecular diagnosis and also shifted the relevance of muscle biopsies within the diagnostic process. Depending on the clinical presentation of the patients, direct gene or panel sequencing may be the preferred method nowadays. However, histological and ultrastructural examinations of muscle sections are still frequently useful and can constitute an elemental step in the diagnostic process-either by directing purposeful gene sequencing or pointing to genes and pathogenic variants identified by next-generation sequencing (NGS), or by complementing clinical findings and biochemical analysis methods.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"191"},"PeriodicalIF":6.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sarcomatous transformation of IDH-mutant astrocytoma matching to methylation class oligosarcoma following embolization, a case report. 栓塞后idh突变星形细胞瘤与甲基化级少肉瘤相匹配的肉瘤转化1例报告。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-20 DOI: 10.1186/s40478-024-01908-7
Ryan Landvater, Arushi Tripathy, Edwin Nieblas-Bedolla, Lina Shao, Kyle Conway, Wajd Al-Holou, Sean P Ferris
{"title":"Sarcomatous transformation of IDH-mutant astrocytoma matching to methylation class oligosarcoma following embolization, a case report.","authors":"Ryan Landvater, Arushi Tripathy, Edwin Nieblas-Bedolla, Lina Shao, Kyle Conway, Wajd Al-Holou, Sean P Ferris","doi":"10.1186/s40478-024-01908-7","DOIUrl":"10.1186/s40478-024-01908-7","url":null,"abstract":"<p><p>The mesenchymal transformations of infiltrating gliomas are uncommon events. This is particularly true of IDH-mutant astrocytomas and oligodendrogliomas, in which mesenchymal transformation is exceedingly rare. oligosarcoma is a newly recognized methylation class (MC) that represents transformed 1p/19q co-deleted oligodendrogliomas, but recent studies indicate it may be non-specific. Herein we report the diffuse sarcomatous transformation of a multifocal recurrent astrocytoma from a precursor IDH-mutant astrocytoma, CNS WHO grade 3, in a young patient following embolization therapy and matching to MC oligosarcoma. The sarcomatous recurrence and original tumor showed identical 17q breakpoints with loss of heterozygosity of TP53. Both lack the defining 1p/19q co-deletion or copy-neutral heterozygosity of an oligodendroglioma and oligosarcoma. The findings in this case report both contribute to the apparent heterogeneity of the novel MC oligosarcoma and describe a second reported mesenchymal transformation of an IDH-mutant astrocytoma.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"196"},"PeriodicalIF":6.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limbic system synaptic dysfunctions associated with prion disease onset. 边缘系统突触功能障碍与朊病毒病发病相关。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-20 DOI: 10.1186/s40478-024-01905-w
Simote T Foliaki, Bradley R Groveman, Emmett A Dews, Katie Williams, Hadil El Soufi, Benjamin Schwarz, Jacqueline M Leung, Christine A Schneider, Cindi L Schwartz, Eric Bohrnsen, Cole D Kimzey, Brent Race, Cathryn L Haigh
{"title":"Limbic system synaptic dysfunctions associated with prion disease onset.","authors":"Simote T Foliaki, Bradley R Groveman, Emmett A Dews, Katie Williams, Hadil El Soufi, Benjamin Schwarz, Jacqueline M Leung, Christine A Schneider, Cindi L Schwartz, Eric Bohrnsen, Cole D Kimzey, Brent Race, Cathryn L Haigh","doi":"10.1186/s40478-024-01905-w","DOIUrl":"10.1186/s40478-024-01905-w","url":null,"abstract":"<p><p>Misfolding of normal prion protein (PrP<sup>C</sup>) to pathological isoforms (prions) causes prion diseases (PrDs) with clinical manifestations including cognitive decline and mood-related behavioral changes. Cognition and mood are linked to the neurophysiology of the limbic system. Little is known about how the disease affects the synaptic activity in brain parts associated with this system. We hypothesize that the dysfunction of synaptic transmission in the limbic regions correlates with the onset of reduced cognition and behavioral deficits. Here, we studied how prion infection in mice disrupts the synaptic function in three limbic regions, the hippocampus, hypothalamus, and amygdala, at a pre-clinical stage (mid-incubation period) and early clinical onset. PrD caused calcium flux dysregulation associated with lesser spontaneous synchronous neuronal firing and slowing neural oscillation at the pre-clinical stage in the hippocampal CA1, ventral medial hypothalamus, and basolateral amygdala (BLA). At clinical onset, synaptic transmission and synaptic plasticity became significantly disrupted. This correlated with a substantial depletion of the soluble prion protein, loss of total synapses, abnormal neurotransmitter levels and synaptic release, decline in synaptic vesicle recycling, and cytoskeletal damage. Further, the amygdala exhibited distinct disease-related changes in synaptic morphology and physiology compared with the other regions, but generally to a lesser degree, demonstrating how different rates of damage in the limbic system influence the evolution of clinical disease. Overall, PrD causes synaptic damage in three essential limbic regions starting at a preclinical stage and resulting in synaptic plasticity dysfunction correlated with early disease signs. Therapeutic drugs that alleviate these early neuronal dysfunctions may significantly delay clinical onset.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"192"},"PeriodicalIF":6.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BDNF augmentation reverses cranial radiation therapy-induced cognitive decline and neurodegenerative consequences. BDNF增强逆转脑放射治疗引起的认知能力下降和神经退行性后果。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-18 DOI: 10.1186/s40478-024-01906-9
Sanad M El-Khatib, Arya R Vagadia, Anh C D Le, Janet E Baulch, Ding Quan Ng, Mingyu Du, Kevin G Johnston, Zhiqun Tan, Xiangmin Xu, Alexandre Chan, Munjal M Acharya
{"title":"BDNF augmentation reverses cranial radiation therapy-induced cognitive decline and neurodegenerative consequences.","authors":"Sanad M El-Khatib, Arya R Vagadia, Anh C D Le, Janet E Baulch, Ding Quan Ng, Mingyu Du, Kevin G Johnston, Zhiqun Tan, Xiangmin Xu, Alexandre Chan, Munjal M Acharya","doi":"10.1186/s40478-024-01906-9","DOIUrl":"10.1186/s40478-024-01906-9","url":null,"abstract":"<p><p>Cranial radiation therapy (RT) for brain cancers is often associated with the development of radiation-induced cognitive dysfunction (RICD). RICD significantly impacts the quality of life for cancer survivors, highlighting an unmet medical need. Previous human studies revealed a marked reduction in plasma brain-derived neurotrophic factor (BDNF) post-chronic chemotherapy, linking this decline to a substantial cognitive dysfunction among cancer survivors. Moreover, riluzole (RZ)-mediated increased BDNF in vivo in the chemotherapy-exposed mice reversed cognitive decline. RZ is an FDA-approved medication for ALS known to increase BDNF in vivo. In an effort to mitigate the detrimental effects of RT-induced BDNF decline in RICD, we tested the efficacy of RZ in a cranially irradiated (9 Gy) adult mouse model. Notably, RT-exposed mice exhibited significantly reduced hippocampal BDNF, accompanied by increased neuroinflammation, loss of neuronal plasticity-related immediate early gene product, cFos, and synaptic density. Spatial transcriptomic profiling comparing the RT + Vehicle with the RT + RZ group showed gene expression signatures of neuroprotection of hippocampal excitatory neurons post-RZ. RT-exposed mice performed poorly on learning and memory, and memory consolidation tasks. However, irradiated mice receiving RZ (13 mg/kg, drinking water) for 6-7 weeks showed a significant improvement in cognitive function compared to RT-exposed mice receiving vehicle. Dual-immunofluorescence staining, spatial transcriptomics, and biochemical assessment of RZ-treated irradiated brains demonstrated preservation of synaptic integrity and mature neuronal plasticity but not neurogenesis and reduced neuroinflammation concurrent with elevated BDNF levels and transcripts compared to vehicle-treated irradiated brains. In summary, oral administration of RZ represents a viable and translationally feasible neuroprotective approach against RICD.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"190"},"PeriodicalIF":6.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function. x连锁的智力残疾基因CUL4B对记忆和突触功能至关重要。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-04 DOI: 10.1186/s40478-024-01903-y
Wei Jiang, Jian Zhang, Molin Wang, Yongxin Zou, Qiao Liu, Yu Song, Gongping Sun, Yaoqin Gong, Fan Zhang, Baichun Jiang
{"title":"The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function.","authors":"Wei Jiang, Jian Zhang, Molin Wang, Yongxin Zou, Qiao Liu, Yu Song, Gongping Sun, Yaoqin Gong, Fan Zhang, Baichun Jiang","doi":"10.1186/s40478-024-01903-y","DOIUrl":"10.1186/s40478-024-01903-y","url":null,"abstract":"<p><p>Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene lead to syndromic X-linked intellectual disability (XLID). Till now, the mechanism of intellectual disability caused by CUL4B mutation still needs to be elucidated. In this study, we used single-nucleus RNA sequencing (snRNA-seq) to investigate the impact of CUL4B deficiency on the transcriptional programs of diverse cell types. The results revealed that depletion of CUL4B resulted in impaired intercellular communication and elicited cell type-specific transcriptional changes relevant to synapse dysfunction. Golgi-Cox staining of brain slices and immunostaining of in vitro cultured neurons revealed remarkable synapse loss in CUL4B-deficient mice. Ultrastructural analysis via transmission electron microscopy (TEM) showed that the width of the synaptic cleft was significantly greater in CUL4B-deficient mice. Electrophysiological experiments found a decrease in the amplitude of AMPA receptor-mediated EPSCs in the hippocampal CA1 pyramidal neurons of CUL4B-deficient mice. These results indicate that depletion of CUL4B in mice results in morphological and functional abnormalities in synapses. Furthermore, behavioral tests revealed that depletion of CUL4B in the mouse nervous system results in impaired spatial learning and memory. Taken together, the findings of this study reveal the pathogenesis of neurological disorders associated with CUL4B mutations and promote the identification of therapeutic targets that can halt synaptic abnormalities and preserve memory in individuals.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"188"},"PeriodicalIF":6.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The neuropathological basis of elevated serum neurofilament light following experimental concussion. 实验性脑震荡后血清神经丝光升高的神经病理学基础。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-04 DOI: 10.1186/s40478-024-01883-z
John D Arena, Douglas H Smith, Ramon Diaz Arrastia, D Kacy Cullen, Rui Xiao, Jiaxin Fan, Danielle C Harris, Cillian E Lynch, Victoria E Johnson
{"title":"The neuropathological basis of elevated serum neurofilament light following experimental concussion.","authors":"John D Arena, Douglas H Smith, Ramon Diaz Arrastia, D Kacy Cullen, Rui Xiao, Jiaxin Fan, Danielle C Harris, Cillian E Lynch, Victoria E Johnson","doi":"10.1186/s40478-024-01883-z","DOIUrl":"10.1186/s40478-024-01883-z","url":null,"abstract":"<p><p>Mild traumatic brain injury (mTBI) or concussion is a substantial health problem globally, with up to 15% of patients experiencing persisting symptoms that can significantly impact quality of life. Currently, the diagnosis of mTBI relies on clinical presentation with ancillary neuroimaging to exclude more severe forms of injury. However, identifying patients at risk for a poor outcome or protracted recovery is challenging, in part due to the lack of early objective tests that reflect the relevant underlying pathology. While the pathophysiology of mTBI is poorly understood, axonal damage caused by rotational forces is now recognized as an important consequence of injury. Moreover, serum measurement of the neurofilament light (NfL) protein has emerged as a potentially promising biomarker of injury. Understanding the pathological processes that determine serum NfL dynamics over time, and the ability of NfL to reflect underlying pathology will be critical for future clinical research aimed at reducing the burden of disability after mild TBI. Using a gyrencephalic model of head rotational acceleration scaled to human concussion, we demonstrate significant elevations in serum NfL, with a peak at 3 days post-injury. Moreover, increased serum NfL was detectable out to 2 weeks post-injury, with some evidence it follows a biphasic course. Subsequent quantitative histological examinations demonstrate that axonal pathology, including in the absence of neuronal somatic degeneration, was the likely source of elevated serum NfL. However, the extent of axonal pathology quantified via multiple markers did not correlate strongly with the extent of serum NfL. Interestingly, the extent of blood-brain barrier (BBB) permeability offered more robust correlations with serum NfL measured at multiple time points, suggesting BBB disruption is an important determinant of serum biomarker dynamics after mTBI. These data provide novel insights to the temporal course and pathological basis of serum NfL measurements that inform its utility as a biomarker in mTBI.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"189"},"PeriodicalIF":6.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CK1δ/ε-mediated TDP-43 phosphorylation contributes to early motor neuron disease toxicity in amyotrophic lateral sclerosis. CK1δ/ε介导的TDP-43磷酸化有助于肌萎缩性侧索硬化症早期运动神经元疾病毒性。
IF 6.2 2区 医学
Acta Neuropathologica Communications Pub Date : 2024-12-04 DOI: 10.1186/s40478-024-01902-z
Vivian I Ko, Kailee Ong, Deborah Y Kwon, Xueying Li, Alicia Pietrasiewicz, James S Harvey, Mukesh Lulla, Guruharsha Bhat, Don W Cleveland, John M Ravits
{"title":"CK1δ/ε-mediated TDP-43 phosphorylation contributes to early motor neuron disease toxicity in amyotrophic lateral sclerosis.","authors":"Vivian I Ko, Kailee Ong, Deborah Y Kwon, Xueying Li, Alicia Pietrasiewicz, James S Harvey, Mukesh Lulla, Guruharsha Bhat, Don W Cleveland, John M Ravits","doi":"10.1186/s40478-024-01902-z","DOIUrl":"10.1186/s40478-024-01902-z","url":null,"abstract":"<p><p>Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models. In this study, we advanced our findings into the hTDP-43-ΔNLS in vivo mouse model of ALS and TDP-43 proteinopathy. This mouse model possesses robust disease-relevant features of ALS, including TDP-43 nuclear depletion, cytoplasmic pTDP-43 accumulation, motor behavior deficits, and shortened survival. We tested the effect of homozygous genetic deletion of Csnk1e in the hTDP-43-ΔNLS mouse model and observed a delay in the formation of pTDP-43 without significant ultimate rescue of TDP-43 proteinopathy or disease progression. Homozygous genetic deletion of Csnk1d is lethal in mice, and we were unable to test the role of CK1δ alone. We then targeted both CK1δ and CK1ε kinases by way of CK1δ/ε-selective PF-05236216 inhibitor in the hTDP-43-ΔNLS mouse model, reasoning that inhibiting CK1ε alone would be insufficient as shown by our Csnk1e knockout mouse model study. Treated mice demonstrated reduced TDP-43 phosphorylation, lowered Nf-L levels, and improved survival in the intermediate stages. The soluble TDP-43 may have been more amenable to the inhibitor treatment than insoluble TDP-43. However, the treatments did not result in improved functional measurements or in overall survival. Our results demonstrate that phosphorylation contributes to neuronal toxicity and suggest CK1δ/ε inhibition in combination with other therapies targeting TDP-43 pathology could potentially provide therapeutic benefit in ALS.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"187"},"PeriodicalIF":6.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信