Glaucia Maria de Mendonça Fernandes, Wesley Wang, Saman Seyed Ahmadian, Daniel Jones, Jing Peng, Pierre Giglio, Monica Venere, José Javier Otero
{"title":"Epitranscriptomic analysis reveals clinical and molecular signatures in glioblastoma.","authors":"Glaucia Maria de Mendonça Fernandes, Wesley Wang, Saman Seyed Ahmadian, Daniel Jones, Jing Peng, Pierre Giglio, Monica Venere, José Javier Otero","doi":"10.1186/s40478-025-01966-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study characterizes the glioblastoma (GB) epitranscriptomic landscape in patient who evolve to progressive disease (PD) or pseudo-progressive disease (psPD). Novel differences in N6-Methyladenosine (m6A) RNA methylation patterns between these groups are identified in the first biopsy. Retrospective data of patients that were eventually deemed to have progressive disease or pseudoprogressive disease was captured from the electronic health record, and RNA from the first resection specimen was utilized to evaluate N6-methyladenosine (m6A) biomarkers from FFPE samples. Molecular analysis of m6A methylation modified RNA employed ACA-based RNase MazF digestion. After Quantitative Normalization with ComBat to mitigate batch effects, we identifed differentially methylated transcripts and gene expression analyses, co-expression networks analyses with WGCNA, and subsequently performed gene set GO and KEGG enrichment analyses. Enrichments for metabolic biological processes and pathways were identified in our differential methylated transcripts and select module eigengene networks highlighted key co-expressed genes intricately tied to distinct phenotypes/traits in patients that would ultimately be deemed PD or psPD. Our study identified key genes and pathways modified by m6A RNA methylation associated with cell metabolism alterations, highlighting the importance of understanding m6A mechanisms leading to the oncometabolite accumulation governing PD versus psPD patients. Furthermore, these data indicate that epitranscriptomal differences between PD versus psPD are detected early in the disease course.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"74"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01966-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study characterizes the glioblastoma (GB) epitranscriptomic landscape in patient who evolve to progressive disease (PD) or pseudo-progressive disease (psPD). Novel differences in N6-Methyladenosine (m6A) RNA methylation patterns between these groups are identified in the first biopsy. Retrospective data of patients that were eventually deemed to have progressive disease or pseudoprogressive disease was captured from the electronic health record, and RNA from the first resection specimen was utilized to evaluate N6-methyladenosine (m6A) biomarkers from FFPE samples. Molecular analysis of m6A methylation modified RNA employed ACA-based RNase MazF digestion. After Quantitative Normalization with ComBat to mitigate batch effects, we identifed differentially methylated transcripts and gene expression analyses, co-expression networks analyses with WGCNA, and subsequently performed gene set GO and KEGG enrichment analyses. Enrichments for metabolic biological processes and pathways were identified in our differential methylated transcripts and select module eigengene networks highlighted key co-expressed genes intricately tied to distinct phenotypes/traits in patients that would ultimately be deemed PD or psPD. Our study identified key genes and pathways modified by m6A RNA methylation associated with cell metabolism alterations, highlighting the importance of understanding m6A mechanisms leading to the oncometabolite accumulation governing PD versus psPD patients. Furthermore, these data indicate that epitranscriptomal differences between PD versus psPD are detected early in the disease course.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.