{"title":"Solar Interior Rotation and its Variation","authors":"Rachel Howe","doi":"10.12942/lrsp-2009-1","DOIUrl":"https://doi.org/10.12942/lrsp-2009-1","url":null,"abstract":"<p>This article surveys the development of observational understanding of the interior rotation of the Sun and its temporal variation over approximately forty years, starting with the 1960s attempts to determine the solar core rotation from oblateness and proceeding through the development of helioseismology to the detailed modern picture of the internal rotation deduced from continuous helioseismic observations during solar cycle 23. After introducing some basic helioseismic concepts, it covers, in turn, the rotation of the core and radiative interior, the “tachocline” shear layer at the base of the convection zone, the differential rotation in the convection zone, the near-surface shear, the pattern of migrating zonal flows known as the torsional oscillation, and the possible temporal variations at the bottom of the convection zone. For each area, the article also briefly explores the relationship between observations and models.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"6 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2009-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4011274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar Surface Convection","authors":"Åke Nordlund, Robert F. Stein, Martin Asplund","doi":"10.12942/lrsp-2009-2","DOIUrl":"https://doi.org/10.12942/lrsp-2009-2","url":null,"abstract":"<p>We review the properties of solar convection that are directly observable at the solar surface, and discuss the relevant underlying physics, concentrating mostly on a range of depths from the temperature minimum down to about 20 Mm below the visible solar surface.</p><p>The properties of convection at the main energy carrying (granular) scales are tightly constrained by observations, in particular by the detailed shapes of photospheric spectral lines and the topology (time- and length-scales, flow velocities, etc.) of the up- and downflows. Current supercomputer models match these constraints very closely, which lends credence to the models, and allows robust conclusions to be drawn from analysis of the model properties.</p><p>At larger scales the properties of the convective velocity field at the solar surface are strongly influenced by constraints from mass conservation, with amplitudes of larger scale horizontal motions decreasing roughly in inverse proportion to the scale of the motion. To a large extent, the apparent presence of distinct (meso- and supergranulation) scales is a result of the folding of this spectrum with the effective “filters” corresponding to various observational techniques. Convective motions on successively larger scales advect patterns created by convection on smaller scales; this includes patterns of magnetic field, which thus have an approximately self-similar structure at scales larger than granulation.</p><p>Radiative-hydrodynamical simulations of solar surface convection can be used as 2D/3D time-dependent models of the solar atmosphere to predict the emergent spectrum. In general, the resulting detailed spectral line profiles agree spectacularly well with observations without invoking any micro- and macroturbulence parameters due to the presence of convective velocities and atmosphere inhomogeneities. One of the most noteworthy results has been a significant reduction in recent years in the derived solar C, N, and O abundances with far-reaching consequences, not the least for helioseismology.</p><p>Convection in the solar surface layers is also of great importance for helioseismology in other ways; excitation of the wave spectrum occurs primarily in these layers, and convection influences the size of global wave cavity and, hence, the mode frequencies. On local scales convection modulates wave propagation, and supercomputer convection simulations may thus be used to test and calibrate local helioseismic methods.</p><p>We also discuss the importance of near solar surface convection for the structure and evolution of magnetic patterns: faculae, pores, and sunspots, and briefly address the question of the importance or not of local dynamo action near the solar surface. Finally, we discuss the importance of near solar surface convection as a driver for chromospheric and coronal heating.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"6 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2009-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4011280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coronal Holes","authors":"Steven R. Cranmer","doi":"10.12942/lrsp-2009-3","DOIUrl":"https://doi.org/10.12942/lrsp-2009-3","url":null,"abstract":"<p>Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance), but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"6 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2009-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2009-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5132702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flare Observations","authors":"Arnold O. Benz","doi":"10.12942/lrsp-2008-1","DOIUrl":"https://doi.org/10.12942/lrsp-2008-1","url":null,"abstract":"<p>Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs), electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"5 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2008-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4010178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stellar Chromospheric Activity","authors":"Jeffrey C. Hall","doi":"10.12942/lrsp-2008-2","DOIUrl":"https://doi.org/10.12942/lrsp-2008-2","url":null,"abstract":"<p>The Sun, stars similar to it, and many rather dissimilar to it, have <i>chromospheres</i>, regions classically viewed as lying above the brilliant photosphere and characterized by a positive temperature gradient and a marked departure from radiative equilibrium. Stellar chromospheres exhibit a wide range of phenomena collectively called <i>activity</i>, stemming largely from the time evolution of their magnetic fields and the mass flux and transfer of radiation through the complex magnetic topology and the increasingly optically thin plasma of the outer stellar atmosphere. In this review, I will (1) outline the development of our understanding of chromospheric structure from 1960 to the present, (2) discuss the major observational programs and theoretical lines of inquiry, (3) review the origin and nature of both solar and stellar chromospheric activity and its relationship to, and effect on, stellar parameters including total energy output, and (4) summarize the outstanding problems today.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"5 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2008-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4010176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A History of Solar Activity over Millennia","authors":"Ilya G. Usoskin","doi":"10.12942/lrsp-2008-3","DOIUrl":"https://doi.org/10.12942/lrsp-2008-3","url":null,"abstract":"<p>Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method.</p><p>The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number.</p><p>Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxy, such as the cosmogenic isotopes <sup>14</sup> C and <sup>10</sup>Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia) during the Holocene.</p><p>A separate section is devoted to reconstructions of strong solar-energetic-particle (SEP) events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely.</p><p>Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"5 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2008-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2008-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4837011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Sun in Time: Activity and Environment","authors":"Manuel Güdel","doi":"10.12942/lrsp-2007-3","DOIUrl":"https://doi.org/10.12942/lrsp-2007-3","url":null,"abstract":"<p>The Sun’s magnetic activity has steadily declined during its main-sequence life. While the solar photospheric luminosity was about 30% lower 4.6 Gyr ago when the Sun arrived on the main sequence compared to present-day levels, its faster rotation generated enhanced magnetic activity; magnetic heating processes in the chromosphere, the transition region, and the corona induced ultraviolet, extreme-ultraviolet, and X-ray emission about 10, 100, and 1000 times, respectively, the present-day levels, as inferred from young solar-analog stars. Also, the production rate of accelerated, high-energy particles was orders of magnitude higher than in present-day solar flares, and a much stronger wind escaped from the Sun, permeating the entire solar system. The consequences of the enhanced radiation and particle fluxes from the young Sun were potentially severe for the evolution of solar-system planets and moons. Interactions of high-energy radiation and the solar wind with upper planetary atmospheres may have led to the escape of important amounts of atmospheric constituents. The present dry atmosphere of Venus and the thin atmosphere of Mars may be a product of early irradiation and heating by solar high-energy radiation. High levels of magnetic activity are also inferred for the pre-main sequence Sun. At those stages, interactions of high-energy radiation and particles with the circumsolar disk in which planets eventually formed were important. Traces left in meteorites by energetic particles and anomalous isotopic abundance ratios in meteoritic inclusions may provide evidence for a highly active pre-main sequence Sun. The present article reviews these various issues related to the magnetic activity of the young Sun and the consequent interactions with its environment. The emphasis is on the phenomenology related to the production of high-energy photons and particles. Apart from the activity on the young Sun, systematic trends applicable to the entire main-sequence life of a solar analog are discussed.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"4 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2007-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2007-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4779954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Sun and the Earth’s Climate","authors":"Joanna D. Haigh","doi":"10.12942/lrsp-2007-2","DOIUrl":"https://doi.org/10.12942/lrsp-2007-2","url":null,"abstract":"<p>Variations in solar activity, at least as observed in numbers of sunspots, have been apparent since ancient times but to what extent solar variability may affect global climate has been far more controversial. The subject had been in and out of fashion for at least two centuries but the current need to distinguish between natural and anthropogenic causes of climate change has brought it again to the forefront of meteorological research. The absolute radiometers carried by satellites since the late 1970s have produced indisputable evidence that total solar irradiance varies systematically over the 11-year sunspot cycle, relegating to history the term “solar constant”, but it is difficult to explain how the apparent response to the Sun, seen in many climate records, can be brought about by these rather small changes in radiation. This article reviews some of the evidence for a solar influence on the lower atmosphere and discusses some of the mechanisms whereby the Sun may produce more significant impacts than might be surmised from a consideration only of variations in total solar irradiance.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"4 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2007-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2007-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4100181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Space Weather: Terrestrial Perspective","authors":"Tuija Pulkkinen","doi":"10.12942/lrsp-2007-1","DOIUrl":"https://doi.org/10.12942/lrsp-2007-1","url":null,"abstract":"<p>Space weather effects arise from the dynamic conditions in the Earth’s space environment driven by processes on the Sun. While some effects are influenced neither by the properties of nor the processes within the Earth’s magnetosphere, others are critically dependent on the interaction of the impinging solar wind with the terrestrial magnetic field and plasma environment. As the utilization of space has become part of our everyday lives, and as our lives have become increasingly dependent on technological systems vulnerable to space weather influences, understanding and predicting hazards posed by the active solar events has grown in importance. This review introduces key dynamic processes within the magnetosphere and discusses their relationship to space weather hazards.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"4 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2007-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5219261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic Physics of the Solar Corona and Solar Wind","authors":"Eckart Marsch","doi":"10.12942/lrsp-2006-1","DOIUrl":"https://doi.org/10.12942/lrsp-2006-1","url":null,"abstract":"<p>Kinetic plasma physics of the solar corona and solar wind are reviewed with emphasis on the theoretical understanding of the <i>in situ</i> measurements of solar wind particles and waves, as well as on the remote-sensing observations of the solar corona made by means of ultraviolet spectroscopy and imaging. In order to explain coronal and interplanetary heating, the micro-physics of the dissipation of various forms of mechanical, electric and magnetic energy at small scales (e.g., contained in plasma waves, turbulences or non-uniform flows) must be addressed. We therefore scrutinise the basic assumptions underlying the classical transport theory and the related collisional heating rates, and also describe alternatives associated with wave-particle interactions. We elucidate the kinetic aspects of heating the solar corona and interplanetary plasma through Landau- and cyclotron-resonant damping of plasma waves, and analyse in detail wave absorption and micro instabilities. Important aspects (virtues and limitations) of fluid models, either single- and multi-species or magnetohydrodynamic and multi-moment models, for coronal heating and solar wind acceleration are critically discussed. Also, kinetic model results which were recently obtained by numerically solving the Vlasov-Boltzmann equation in a coronal funnel and hole are presented. Promising areas and perspectives for future research are outlined finally.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"3 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2006-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2006-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5039395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}