Andrés Asensio Ramos, Mark C. M. Cheung, Iulia Chifu, Ricardo Gafeira
{"title":"Machine learning in solar physics","authors":"Andrés Asensio Ramos, Mark C. M. Cheung, Iulia Chifu, Ricardo Gafeira","doi":"10.1007/s41116-023-00038-x","DOIUrl":"10.1007/s41116-023-00038-x","url":null,"abstract":"<div><p>The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.</p></div>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"20 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-023-00038-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4539472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Models for the long-term variations of solar activity","authors":"Bidya Binay Karak","doi":"10.1007/s41116-023-00037-y","DOIUrl":"10.1007/s41116-023-00037-y","url":null,"abstract":"<div><p>One obvious feature of the solar cycle is its variation from one cycle to another. In this article, we review the dynamo models for the long-term variations of the solar cycle. By long-term variations, we mean the cycle modulations beyond the 11-year periodicity and these include, the Gnevyshev–Ohl/Even–Odd rule, grand minima, grand maxima, Gleissberg cycle, and Suess cycles. After a brief review of the observed data, we present the dynamo models for the solar cycle. By carefully analyzing the dynamo models and the observed data, we identify the following broad causes for the modulation: (1) magnetic feedback on the flow, (2) stochastic forcing, and (3) time delays in various processes of the dynamo. To demonstrate each of these causes, we present the results from some illustrative models for the cycle modulations and discuss their strengths and weakness. We also discuss a few critical issues and their current trends. The article ends with a discussion of our current state of ignorance about comparing detailed features of the magnetic cycle and the large-scale velocity from the dynamo models with robust observations.</p></div>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"20 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-023-00037-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5010425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David B. Jess, Shahin Jafarzadeh, Peter H. Keys, Marco Stangalini, Gary Verth, Samuel D. T. Grant
{"title":"Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes","authors":"David B. Jess, Shahin Jafarzadeh, Peter H. Keys, Marco Stangalini, Gary Verth, Samuel D. T. Grant","doi":"10.1007/s41116-022-00035-6","DOIUrl":"10.1007/s41116-022-00035-6","url":null,"abstract":"<div><p>Waves and oscillations have been observed in the Sun’s atmosphere for over half a century. While such phenomena have readily been observed across the entire electromagnetic spectrum, spanning radio to gamma-ray sources, the underlying role of waves in the supply of energy to the outermost extremities of the Sun’s corona has yet to be uncovered. Of particular interest is the lower solar atmosphere, including the photosphere and chromosphere, since these regions harbor the footpoints of powerful magnetic flux bundles that are able to guide oscillatory motion upwards from the solar surface. As a result, many of the current- and next-generation ground-based and space-borne observing facilities are focusing their attention on these tenuous layers of the lower solar atmosphere in an attempt to study, at the highest spatial and temporal scales possible, the mechanisms responsible for the generation, propagation, and ultimate dissipation of energetic wave phenomena. Here, we present a two-fold review that is designed to overview both the wave analyses techniques the solar physics community currently have at their disposal, as well as highlight scientific advancements made over the last decade. Importantly, while many ground-breaking studies will address and answer key problems in solar physics, the cutting-edge nature of their investigations will naturally pose yet more outstanding observational and/or theoretical questions that require subsequent follow-up work. This is not only to be expected, but should be embraced as a reminder of the era of rapid discovery we currently find ourselves in. We will highlight these open questions and suggest ways in which the solar physics community can address these in the years and decades to come.</p></div>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"20 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-022-00035-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4748130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edward W. Cliver, Carolus J. Schrijver, Kazunari Shibata, Ilya G. Usoskin
{"title":"Extreme solar events","authors":"Edward W. Cliver, Carolus J. Schrijver, Kazunari Shibata, Ilya G. Usoskin","doi":"10.1007/s41116-022-00033-8","DOIUrl":"10.1007/s41116-022-00033-8","url":null,"abstract":"<div><p>We trace the evolution of research on extreme solar and solar-terrestrial events from the 1859 Carrington event to the rapid development of the last twenty years. Our focus is on the largest observed/inferred/theoretical cases of sunspot groups, flares on the Sun and Sun-like stars, coronal mass ejections, solar proton events, and geomagnetic storms. The reviewed studies are based on modern observations, historical or long-term data including the auroral and cosmogenic radionuclide record, and <i>Kepler</i> observations of Sun-like stars. We compile a table of 100- and 1000-year events based on occurrence frequency distributions for the space weather phenomena listed above. Questions considered include the Sun-like nature of superflare stars and the existence of impactful but unpredictable solar \"black swans\" and extreme \"dragon king\" solar phenomena that can involve different physics from that operating in events which are merely large.</p></div>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"19 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-022-00033-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4551619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic reconnection: MHD theory and modelling","authors":"David I. Pontin, Eric R. Priest","doi":"10.1007/s41116-022-00032-9","DOIUrl":"10.1007/s41116-022-00032-9","url":null,"abstract":"<div><p>In this review we focus on the fundamental theory of magnetohydrodynamic reconnection, together with applications to understanding a wide range of dynamic processes in the solar corona, such as flares, jets, coronal mass ejections, the solar wind and coronal heating. We summarise only briefly the related topics of collisionless reconnection, non-thermal particle acceleration, and reconnection in systems other than the corona. We introduce several preliminary topics that are necessary before the subtleties of reconnection can be fully described: these include null points (Sects. 2.1–2.2), other topological and geometrical features such as separatrices, separators and quasi-separatrix layers (Sects. 2.3, 2.6), the conservation of magnetic flux and field lines (Sect. 3), and magnetic helicity (Sect. 4.6). Formation of current sheets in two- and three-dimensional fields is reviewed in Sect. 5. These set the scene for a discussion of the definition and properties of reconnection in three dimensions that covers the conditions for reconnection, the failure of the concept of a flux velocity, the nature of diffusion, and the differences between two-dimensional and three-dimensional reconnection (Sect. 4). Classical 2D models are briefly presented, including magnetic annihilation (Sect. 6), slow and fast regimes of steady reconnection (Sect. 7), and non-steady reconnection such as the tearing mode (Sect. 8). Then three routes to fast reconnection in a collisional or collisionless medium are described (Sect. 9). The remainder of the review is dedicated to our current understanding of how magnetic reconnection operates in three dimensions and in complex magnetic fields such as that of the Sun’s corona. In Sects. 10–12, 14.1 the different regimes of reconnection that are possible in three dimensions are summarised, including at a null point, separator, quasi-separator or a braid. The role of 3D reconnection in solar flares (Sect. 13) is reviewed, as well as in coronal heating (Sect. 14), and the release of the solar wind (Sect. 15.2). Extensions including the role of reconnection in the magnetosphere (Sect. 15.3), the link between reconnection and turbulence (Sect. 16), and the role of reconnection in particle acceleration (Sect. 17) are briefly mentioned.</p></div>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"19 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-022-00032-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4432950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Parker problem: existence of smooth force-free fields and coronal heating","authors":"David I. Pontin, Gunnar Hornig","doi":"10.1007/s41116-020-00026-5","DOIUrl":"https://doi.org/10.1007/s41116-020-00026-5","url":null,"abstract":"<p>Parker (Astrophys?J 174:499, 1972) put forward a hypothesis regarding the fundamental nature of equilibrium magnetic fields in astrophysical plasmas. He proposed that if an equilibrium magnetic field is subjected to an arbitrary, small perturbation, then—under ideal plasma dynamics—the resulting magnetic field will in general not relax towards a smooth equilibrium, but rather, towards a state containing tangential magnetic field discontinuities. Even at astrophysical plasma parameters, as the singular state is approached dissipation must eventually become important, leading to the onset of rapid magnetic reconnection and energy dissipation. This <i>topological dissipation</i> mechanism remains a matter of debate, and is a key ingredient in the <i>nanoflare</i> model for coronal heating. We review the various theoretical and computational approaches that have sought to prove or disprove Parker’s hypothesis. We describe the hypothesis in the context of coronal heating, and discuss different approaches that have been taken to investigating whether braiding of magnetic field lines is responsible for maintaining the observed coronal temperatures. We discuss the many advances that have been made, and highlight outstanding open questions.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"17 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-020-00026-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5392596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamo models of the solar cycle","authors":"Paul Charbonneau","doi":"10.1007/s41116-020-00025-6","DOIUrl":"https://doi.org/10.1007/s41116-020-00025-6","url":null,"abstract":"<p>This paper reviews recent advances and current debates in modeling the solar cycle as a hydromagnetic dynamo process. Emphasis is placed on (relatively) simple dynamo models that are nonetheless detailed enough to be comparable to solar cycle observations. After a brief overview of the dynamo problem and of key observational constraints, I begin by reviewing the various magnetic field regeneration mechanisms that have been proposed in the solar context. I move on to a presentation and critical discussion of extant solar cycle models based on these mechanisms, followed by a discussion of recent magnetohydrodynamical simulations of solar convection generating solar-like large-scale magnetic cycles. I then turn to the origin and consequences of fluctuations in these models and simulations, including amplitude and parity modulation, chaotic behavior, and intermittency. The paper concludes with a discussion of our current state of ignorance regarding various key questions relating to the explanatory framework offered by dynamo models of the solar cycle.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"17 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-020-00025-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4688421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar cycle prediction","authors":"Kristóf Petrovay","doi":"10.1007/s41116-020-0022-z","DOIUrl":"https://doi.org/10.1007/s41116-020-0022-z","url":null,"abstract":"<p>A review of solar cycle prediction methods and their performance is given, including early forecasts for Cycle?25. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. <i>Precursor methods</i> rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. The choice of a good precursor often implies considerable physical insight: indeed, it has become increasingly clear that the transition from purely empirical precursors to <i>model-based methods</i> is continuous. Model-based approaches can be further divided into two groups: predictions based on surface flux transport models and on consistent dynamo models. The implicit assumption of precursor methods is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. <i>Extrapolation methods,</i> in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time, and therefore it lends itself to analysis and forecasting by time series methods. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. One method that has yielded predictions consistently in the right range during the past few solar cycles is the polar field precursor. Nevertheless, some extrapolation methods may still be worth further study. Model based forecasts are quickly coming into their own, and, despite not having a long proven record, their predictions are received with increasing confidence by the community.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"17 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-020-0022-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4900943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flare-productive active regions","authors":"Shin Toriumi, Haimin Wang","doi":"10.1007/s41116-019-0019-7","DOIUrl":"https://doi.org/10.1007/s41116-019-0019-7","url":null,"abstract":"<p>Strong solar flares and coronal mass ejections, here defined not only as the bursts of electromagnetic radiation but as the entire process in which magnetic energy is released through magnetic reconnection and plasma instability, emanate from active regions (ARs) in which high magnetic non-potentiality resides in a wide variety of forms. This review focuses on the formation and evolution of flare-productive ARs from both observational and theoretical points of view. Starting from a general introduction of the genesis of ARs and solar flares, we give an overview of the key observational features during the long-term evolution in the pre-flare state, the rapid changes in the magnetic field associated with the flare occurrence, and the physical mechanisms behind these phenomena. Our picture of flare-productive ARs is summarized as follows: subject to the turbulent convection, the rising magnetic flux in the interior deforms into a complex structure and gains high non-potentiality; as the flux appears on the surface, an AR with large free magnetic energy and helicity is built, which is represented by <span>(delta )</span>-sunspots, sheared polarity inversion lines, magnetic flux ropes, etc; the flare occurs when sufficient magnetic energy has accumulated, and the drastic coronal evolution affects magnetic fields even in the photosphere. We show that the improvement of observational instruments and modeling capabilities has significantly advanced our understanding in the last decades. Finally, we discuss the outstanding issues and future perspective and further broaden our scope to the possible applications of our knowledge to space-weather forecasting, extreme events in history, and corresponding stellar activities.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"16 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-019-0019-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4836231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar prominences: theory and models","authors":"Sarah E. Gibson","doi":"10.1007/s41116-018-0016-2","DOIUrl":"https://doi.org/10.1007/s41116-018-0016-2","url":null,"abstract":"<p>Magnetic fields suspend the relatively cool material of solar prominences in an otherwise hot corona. A comprehensive understanding of solar prominences ultimately requires complex and dynamic models, constrained and validated by observations spanning the solar atmosphere. We obtain the core of this understanding from observations that give us information about the structure of the “magnetic skeleton” that supports and surrounds the prominence. Energetically-sophisticated magnetohydrodynamic simulations then add flesh and blood to the skeleton, demonstrating how a thermally varying plasma may pulse through to form the prominence, and how the plasma and magnetic fields dynamically interact.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"15 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-018-0016-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4875713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}