{"title":"Analog Approximation of Functions Using Generalized Polynomials","authors":"L. Fekih-Ahmed","doi":"10.1109/IC_ASET53395.2022.9765867","DOIUrl":"https://doi.org/10.1109/IC_ASET53395.2022.9765867","url":null,"abstract":"We describe a new constructive method of approximation of analogue functions in CMOS. The method relies on the theories of Bürmann expansion and interpolation using Lagrange generalized polynomials: any real differentiable function can be synthesized in a unique way as a linear combination of the powers tanhn(x). We give the exact formulas for the coefficients involved in the linear combination. SPICE simulations confirm the method through a linear (linearized transconductor), squaring, cube, exponential and bump circuit four-quadrant function approximator.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75345769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Modeling and Vector control of DFIG-based Wind Turbine","authors":"Ines Zgarni, L. El Amraoui","doi":"10.1109/IC_ASET53395.2022.9765917","DOIUrl":"https://doi.org/10.1109/IC_ASET53395.2022.9765917","url":null,"abstract":"This work deals with the development of vector control of Doubly Fed Induction Generator (DFIG) based Wind Turbine system. The dynamic modeling of studied system is described, firstly, according to stationary reference frame αβ and then according to synchronous reference frame dq. Moreover, the wind turbine modeling is evoked by resorting of Maximum Power Point Tracking (MPPT) approach based on indirect speed control. However, the control strategy focuses mainly on the implementation of Rotor-Side Converter (RSC) control employing rotor current control loops and speed and power control loops in order to regulate the electromagnetic torque and the reactive power exchanged between the stator and the grid. The studied system is tested and simulated for both super-synchronous and sub-synchronous wind speed using Sim Power System Simulink of MATLAB to prove the effectiveness of proposed vector control strategy.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"94 1","pages":"262-267"},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90785589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Improved Generation Scheme of Blended Trajectory for Rehabilitation Robots","authors":"Md. Rasedul Islam","doi":"10.1109/IC_ASET53395.2022.9765872","DOIUrl":"https://doi.org/10.1109/IC_ASET53395.2022.9765872","url":null,"abstract":"The trajectory generation ensuring uniform velocity and reduced-jerk is desired for rehabilitation robots. However, this requirement is largely overlooked in the research of rehabilitation robotics. Most research prototypes of existing rehabilitation robots used a cubic polynomial approach in which sudden and large acceleration changes have occurred at the start and the end of the trajectory, which causes theoretically infinite jerk. Moreover, the cubic polynomial approach cannot maintain uniform velocity during the robot's maneuvering. To bridge this gap, in this research, a blended (i.e., hybrid) scheme using fifth-order polynomial at the start and the end of the trajectory and a linear segment in between the polynomials is proposed to generate trajectories for rehabilitation robots. The trajectory generated using the proposed scheme shows no sudden change in acceleration and reduced jerk compared to the cubic polynomial approach.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"41 1","pages":"216-221"},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85753863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}