Analog Approximation of Functions Using Generalized Polynomials

L. Fekih-Ahmed
{"title":"Analog Approximation of Functions Using Generalized Polynomials","authors":"L. Fekih-Ahmed","doi":"10.1109/IC_ASET53395.2022.9765867","DOIUrl":null,"url":null,"abstract":"We describe a new constructive method of approximation of analogue functions in CMOS. The method relies on the theories of Bürmann expansion and interpolation using Lagrange generalized polynomials: any real differentiable function can be synthesized in a unique way as a linear combination of the powers tanhn(x). We give the exact formulas for the coefficients involved in the linear combination. SPICE simulations confirm the method through a linear (linearized transconductor), squaring, cube, exponential and bump circuit four-quadrant function approximator.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET53395.2022.9765867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a new constructive method of approximation of analogue functions in CMOS. The method relies on the theories of Bürmann expansion and interpolation using Lagrange generalized polynomials: any real differentiable function can be synthesized in a unique way as a linear combination of the powers tanhn(x). We give the exact formulas for the coefficients involved in the linear combination. SPICE simulations confirm the method through a linear (linearized transconductor), squaring, cube, exponential and bump circuit four-quadrant function approximator.
用广义多项式模拟逼近函数
提出了一种新的CMOS模拟函数近似构造方法。该方法依赖于b rmann展开和使用拉格朗日广义多项式的插值理论:任何实可微函数都可以以一种独特的方式合成为tanhn(x)幂的线性组合。我们给出了线性组合中所涉及系数的精确公式。SPICE仿真通过线性(线性化的transconductor),平方,立方,指数和碰撞电路四象限函数逼近器证实了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信