{"title":"Analysis of a Novel 3-D Fractional Order Chaotic System","authors":"Ayub Khan, L. S. Jahanzaib, P. Trikha","doi":"10.1109/ICPECA47973.2019.8975668","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975668","url":null,"abstract":"In this article, the novel fractional order three-dimensional chaotic system has been constructed. Its dynamical properties have been thoroughly analyzed. For varying fractional order the properties have also been studied. This model can be made applicable in the field of control systems, secure communication,image encryption etc.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"109 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88205074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kanula Dadhich, V. S. Kurukuru, Mohammed Ali Khan, A. Haque
{"title":"Fault Identification Algorithm for Grid Connected Photovoltaic Systems using Machine Learning Techniques","authors":"Kanula Dadhich, V. S. Kurukuru, Mohammed Ali Khan, A. Haque","doi":"10.1109/ICPECA47973.2019.8975397","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975397","url":null,"abstract":"The motivation and background behind the fault detection for grid connected solar power plant is presented in this paper. The major issues encountered when integrating a PV system to the grid include multi-peak phenomenon due to partial shading, regulation of circulating currents, the impact of grid impedances on PV system stability, Fault Ride-Through (FRT) Capability, and anti-islanding detection. Hence, fault detection and condition monitoring system are necessary for smooth operation. In this paper, a fault classification technique for single-phase grid connected PV systems is developed. Wavelet Transform and Neural network approaches are used for developing the fault classification algorithm. The results depicted that the developed fault detection algorithm shows a significant improvement in the classification accuracy with 98.4%.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"32 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85352353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overview of Fuel Cell Based Distribution Generation Integration","authors":"M. Faizan, Sajjad Ali, Dr.Abrar Ahmad","doi":"10.1109/ICPECA47973.2019.8975622","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975622","url":null,"abstract":"During recent decades the exploration for alternative form of energy have increased drastically due to fossil fuel price rise and its adverse impact on environment, global warming and climate change. This has brought replenish-able fuel cell in focus for DC based power generation system. This paper discusses the need of fuel cell and explores different variants and their comparisons along with working operation. This work also elaborates the integration of fuel cell with the renewable energy option such as wind and solar. Challenges and feasibility of Fuel cell have been discussed. The scope of fuel cell for electric vehicles has also been reviewed. This paper also elaborates its future scope in the global energy market in the prospective varied applications.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89814250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ICPECA 2019 Author Index","authors":"","doi":"10.1109/icpeca47973.2019.8975527","DOIUrl":"https://doi.org/10.1109/icpeca47973.2019.8975527","url":null,"abstract":"","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84900293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Reddy, A. Iqbal, Sivakumar Keerthipati, M. Alhitmi, A. Hasan, H. Mehrjerdi, Asokan Paraprath, A. Shakoor
{"title":"Performance Enhancement of PPMIM Drives by using 3 Three-Phase Four-Leg Inverters","authors":"B. Reddy, A. Iqbal, Sivakumar Keerthipati, M. Alhitmi, A. Hasan, H. Mehrjerdi, Asokan Paraprath, A. Shakoor","doi":"10.1109/ICPECA47973.2019.8975690","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975690","url":null,"abstract":"In this paper, a multilevel inverter (MLI) scheme is proposed for 9-phase pole phase modulated induction motor (PPMIM) drives. The proposed inverter scheme is realized with the help of 3 three-phase four-leg inverters. In 3-phase 12-pole mode (3PH-I2PO), the proposed MLI supplies a 3-level voltage for each phase winding of the PPMIM drive with an improved harmonic profile. This will minimize the amplitude of spatial harmonics in the airgap MMF, which results in better torque ripple in 3PH-I2PO operation. In this mode, for getting the same performance the PPMIM drive in w.r.t torque ripple the conventional 3-level 9-phase MLI’s requires 40 switches, while the proposed MLI requires only 24 switches, which means the switch count is reduced by 40%. On the other hand, the phase windings of the 9-phase PPMIM drive are rearranged into 3 sets of three phase winding groups, where each phase group has three balanced 1200 phase displaced windings. This phase grouping will give the flexibility to use the 3-phase space vector pulse width modulation (SVPWM) that enhances the linear modulation of the 9-phase PPMIM drives by 15.4% in 9-phase 4-pole mode (9PH-4PO). The 4th leg present in each three-phase four-leg inverter is used effectively for denying the circulating currents in phase windings in 9PH-4PO operation. The proposed MLI scheme is validated with the Ansys Maxwell FEM electromagnetic tool on a 5hp 9-phase PPMIM drive.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81985011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design a Control Mechanism for the Power Management of a Standalone Renewable Energy System","authors":"P. Ganguly, Akhtar Kalam, A. Zayegh","doi":"10.1109/ICPECA47973.2019.8975387","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975387","url":null,"abstract":"Renewable Energy systems (RES) are widely acknowledged as alternative power source. Hybrid Renewable Energy System (HRES), comprising multiple types of renewable/non-renewable sources and storage are eco-friendly, profitable choice for powering especially the remote locations due to the high transportation cost for grid power. However, this kind of system needs efficient power management as the structure is complex due to incorporation of multiple sources and storages. This paper deals with designing an overall power management system for a remote community based in Portland, Victoria. The proposed design aims to significantly improve the performance of the power management system while minimizing the operation cost and the impact of the micro grid on environment. The proposed design ensures efficient power management in-between different renewable sources, storages and load demands. The simulation evidently shows that under various supply and demand condition, the system demonstrates high performance.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79382296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An optimizing utility for Portfolio Selection based on Optimal values computed using ANN, NSGA-II and Machine learning technique","authors":"Chanchal Kumar, M. Doja","doi":"10.1109/ICPECA47973.2019.8975558","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975558","url":null,"abstract":"An optimizing utility for computing the values of derived economic factors of Portfolio selection is described in this paper. The significance of appropriate computing values of these factors has been felt because of the risk-constrained solution of portfolio selection. The classical Lagrangian multiplier method has been extended in the paper, using ANN and NSGA-II algorithm for computing weights used in the cost equations describing these economic factors. A mathematical formulation of the equations using portfolio selection parameters with computed values of weights is provided. A machine learning tool is given next for classifying values of coefficients of variations. Finally, a comparison of the ANN computations of weights with weights computed using NSGA-II is provided. This approach can be advantageous for the portfolio decision-making process.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"42 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74335371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extending IEC 61850 Communication Standard to Achieve Internet-of-Things in Smartgrids","authors":"T. Ustun, S. M. Suhail Hussain","doi":"10.1109/ICPECA47973.2019.8975510","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975510","url":null,"abstract":"Advanced communication has become an indispensable part of modern power systems, a.k.a. smartgrids. Thanks to continuous connectivity between electrical equipment, constant monitoring and control can be utilized to operate these systems in a more efficient and productive way. Novel applications that enable transmission lines to utilize a larger portion of its capacity, demand side management schemes that coordinate power use with respect to available energy and electric vehicle charge-discharge management solutions are all products of increased integration of information technology with power system infrastructure. However, this integration involves different equipment that perform various operations in completely isolated domains. Furthermore, there are numerous vendors that manufacture the same equipment with subtle differences. Establishing a full connectivity among these devices is a very big challenge. In order to tackle this, different communication standards have been proposed. Due to its ability to handle large volume of data exchanges and object-oriented modeling, IEC 61850 has become the de facto standard for advanced communication networks in power systems. The original standard includes some basic equipment present in power networks such as circuit breakers, relays and transformers. In order to cover the new equipment such as smart meters, electric vehicles or fault current limiters, the published standard needs to be extended. Only in this way, can a fully connected, interoperable communication be achieved in future smartgrids.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"5 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75457955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ICPECA 2019 Content Announcement","authors":"","doi":"10.1109/icpeca47973.2019.8975401","DOIUrl":"https://doi.org/10.1109/icpeca47973.2019.8975401","url":null,"abstract":"","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74609786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Droop based Low voltage ride through implementation for grid integrated photovoltaic system","authors":"Mohammed Ali Khan, A. Haque, V. S. Kurukuru","doi":"10.1109/ICPECA47973.2019.8975467","DOIUrl":"https://doi.org/10.1109/ICPECA47973.2019.8975467","url":null,"abstract":"This paper signifies the development of an efficient and cost-effective control scheme for operation of grid integrated photovoltaic (PV) system under low voltage ride through (LVRT) condition. During LVRT If the PV system was to disconnect from the grid, the disconnection further aggravates the situation by causing larger disturbance than what was caused by the fault. To stabilize the system and prevent the flow of over current during LVRT it is necessary to control the reactive power injection in the system. The proposed scheme balances the active power though proportional gain regulation of plug in controller. Compared to the conventional LVRT method, this method is more cost effective. A normal maximum power point tracking (MPPT) scheme is implemented during normal operation. But in case of fault condition, an extra proportional controller is added to assist the droop characteristics of photovoltaic power voltage curve and attain system stability. Simulation has been performed on a grid integrated PV system of 4kW and LVRT conditions are tested. It is observed that the response of controller is fast and seamless during transition mode.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78405257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}