独立可再生能源系统电源管理控制机制设计

P. Ganguly, Akhtar Kalam, A. Zayegh
{"title":"独立可再生能源系统电源管理控制机制设计","authors":"P. Ganguly, Akhtar Kalam, A. Zayegh","doi":"10.1109/ICPECA47973.2019.8975387","DOIUrl":null,"url":null,"abstract":"Renewable Energy systems (RES) are widely acknowledged as alternative power source. Hybrid Renewable Energy System (HRES), comprising multiple types of renewable/non-renewable sources and storage are eco-friendly, profitable choice for powering especially the remote locations due to the high transportation cost for grid power. However, this kind of system needs efficient power management as the structure is complex due to incorporation of multiple sources and storages. This paper deals with designing an overall power management system for a remote community based in Portland, Victoria. The proposed design aims to significantly improve the performance of the power management system while minimizing the operation cost and the impact of the micro grid on environment. The proposed design ensures efficient power management in-between different renewable sources, storages and load demands. The simulation evidently shows that under various supply and demand condition, the system demonstrates high performance.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design a Control Mechanism for the Power Management of a Standalone Renewable Energy System\",\"authors\":\"P. Ganguly, Akhtar Kalam, A. Zayegh\",\"doi\":\"10.1109/ICPECA47973.2019.8975387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable Energy systems (RES) are widely acknowledged as alternative power source. Hybrid Renewable Energy System (HRES), comprising multiple types of renewable/non-renewable sources and storage are eco-friendly, profitable choice for powering especially the remote locations due to the high transportation cost for grid power. However, this kind of system needs efficient power management as the structure is complex due to incorporation of multiple sources and storages. This paper deals with designing an overall power management system for a remote community based in Portland, Victoria. The proposed design aims to significantly improve the performance of the power management system while minimizing the operation cost and the impact of the micro grid on environment. The proposed design ensures efficient power management in-between different renewable sources, storages and load demands. The simulation evidently shows that under various supply and demand condition, the system demonstrates high performance.\",\"PeriodicalId\":6761,\"journal\":{\"name\":\"2019 International Conference on Power Electronics, Control and Automation (ICPECA)\",\"volume\":\"37 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Power Electronics, Control and Automation (ICPECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPECA47973.2019.8975387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA47973.2019.8975387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可再生能源系统(RES)是一种被广泛认可的替代能源。混合可再生能源系统(HRES),包括多种类型的可再生/不可再生能源和存储是环保的,有利可图的选择,特别是偏远地区,由于电网电力的高运输成本。然而,由于集成了多个电源和存储,这种系统结构复杂,需要高效的电源管理。本文为位于维多利亚州波特兰市的一个偏远社区设计了一个整体电源管理系统。本设计旨在显著提高电源管理系统的性能,同时最大限度地降低微网的运行成本和对环境的影响。提出的设计确保在不同的可再生能源、存储和负载需求之间有效的电源管理。仿真结果表明,该系统在各种供需条件下均表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design a Control Mechanism for the Power Management of a Standalone Renewable Energy System
Renewable Energy systems (RES) are widely acknowledged as alternative power source. Hybrid Renewable Energy System (HRES), comprising multiple types of renewable/non-renewable sources and storage are eco-friendly, profitable choice for powering especially the remote locations due to the high transportation cost for grid power. However, this kind of system needs efficient power management as the structure is complex due to incorporation of multiple sources and storages. This paper deals with designing an overall power management system for a remote community based in Portland, Victoria. The proposed design aims to significantly improve the performance of the power management system while minimizing the operation cost and the impact of the micro grid on environment. The proposed design ensures efficient power management in-between different renewable sources, storages and load demands. The simulation evidently shows that under various supply and demand condition, the system demonstrates high performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信