Isabeau Vermeulen, Michiel Vandenbosch, Delphine Viot, Joel Mercier, Diego Asensio-Wandosell Cabañas, Pilar Martinez-Martinez, Patrick Barton, Ron M A Heeren, Berta Cillero-Pastor
{"title":"Spatial Distribution of Brain PET Tracers by MALDI Imaging.","authors":"Isabeau Vermeulen, Michiel Vandenbosch, Delphine Viot, Joel Mercier, Diego Asensio-Wandosell Cabañas, Pilar Martinez-Martinez, Patrick Barton, Ron M A Heeren, Berta Cillero-Pastor","doi":"10.1021/jasms.4c00307","DOIUrl":"10.1021/jasms.4c00307","url":null,"abstract":"<p><p>Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for <i>ex vivo</i> visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates <i>ex vivo</i> with a focus on two compounds: UCB-J and UCB2400. We tested different matrices and introduced washing steps to improve PET tracer detection. Tissue homogenates were prepared to construct calibration curves for quantification. The incorporation of a washing step into the MSI sample preparation protocol enhanced the signal of both PET tracers. Our findings highlight MSI's potential as a cost-effective and efficient method for the evaluation of PET tracer distribution. The optimized approach offered here can provide a protocol that enhances the signal and minimizes ion suppression effect, which can be valuable for future evaluation of PET tracers in MSI studies.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"688-698"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pneumatically Assisted Microfluidic Probe for Enhanced Mass Spectrometry Imaging Performance.","authors":"Li-Xue Jiang, Julia Laskin","doi":"10.1021/jasms.5c00011","DOIUrl":"10.1021/jasms.5c00011","url":null,"abstract":"<p><p>A pneumatically assisted microfluidic probe (MFP) with two microfluidic channels has been developed for nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) of biological samples. This design simplifies the experimental setup, making it independent of the vacuum suction at the mass spectrometer inlet. The implementation of pneumatically assisted solvent flow through the probe enables stable, high solvent flow rates required to maintain a consistent liquid bridge during high-throughput MSI experiments. This approach addresses challenges associated with using MFP nano-DESI probes on mass spectrometers that have limited vacuum suction and the operation of MFPs with small microfluidic channels. We demonstrate the robustness of the pneumatically assisted MFP with 30 μm channels, which cannot be used for high-throughput MSI experiments without pneumatic assistance, by successfully imaging five mouse brain tissue sections without interruptions.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"883-887"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glycosaminoglycan Mass Spectrometry Imaging by Infrared Matrix-Assisted Laser Desorption Electrospray Ionization.","authors":"Tana V Palomino, David C Muddiman","doi":"10.1021/jasms.4c00435","DOIUrl":"10.1021/jasms.4c00435","url":null,"abstract":"<p><p>Chondroitin sulfate (CS) is a type of glycosaminoglycan (GAG) that is abundant in cartilage and perineural networks (PNNs). Changes in the CS signature of PNNs have been implicated in several neurological diseases. Most CS-GAGs contain labile sulfate groups, which can be lost during ionization events that deposit large amounts of internal energy. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a soft ionization technique used for mass spectrometry imaging. In this work, we determine the spatial distribution of CS-GAG disaccharides within rodent brain using IR-MALDESI MSI. Non-, mono-, and disulfated disaccharides were detected with various adducts. All disaccharides colocalized to the PNNs, which are most abundant in the cortex and hippocampus regions of the brain. This is the first MSI study to spatially resolve CS-GAG disaccharides within brain, paving the way for IR-MALDESI to measure GAGs in neurological diseases.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"658-663"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Faces of Mass Spectrometry/Amanda Patrick.","authors":"Anne Brenner, J D Brookbank","doi":"10.1021/jasms.5c00042","DOIUrl":"10.1021/jasms.5c00042","url":null,"abstract":"","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"628-631"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Heffernan, Frederik Oleinek, Ayla Schueler, Paak Wai Lau, Jürgen Kudermann, Alina Meindl, Mathias O Senge, Nicole Strittmatter
{"title":"Headspace Injection Method for Intermittent Sampling and Profiling Analyses of Volatile Organic Compounds Using Dielectric Barrier Discharge Ionization (DBDI).","authors":"Daniel Heffernan, Frederik Oleinek, Ayla Schueler, Paak Wai Lau, Jürgen Kudermann, Alina Meindl, Mathias O Senge, Nicole Strittmatter","doi":"10.1021/jasms.4c00475","DOIUrl":"10.1021/jasms.4c00475","url":null,"abstract":"<p><p>A direct headspace injection method is presented and optimized for the analysis of volatile organic compounds (VOCs) using dielectric barrier discharge ionization-mass spectrometry (DBDI-MS), incorporating an intermediate vial in which the sample headspace is injected. The setup is built of commonly available, cheap consumable parts and easily enables the incorporation of different gases for generating different ionization atmospheres. The method can be fully automated by using standard GC autosamplers, and its rapid analysis time is suitable for high-throughput applications. We show that this method is suitable for both profiling analysis of complex samples such as biofluids and quantitative measurements for real-time reaction monitoring. Our optimized method demonstrated improved reproducibility and sensitivity, with detection limits for compounds tested in the high nanomolar to the low micromolar range, depending on the compound. Key parameters for method optimization were identified such as sample vial volume, headspace-to-liquid ratio, incubation temperature, and equilibration time. These settings were systematically evaluated to maximize the signal intensity and improve repeatability between measurements. Two use cases are demonstrated: (i) quantitative measurement of ethanol production by a metal-organic framework from CO<sub>2</sub> and (ii) profiling of biofluids following the consumption of asparagus.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"801-810"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution of Mass Spectrometers for High <i>m</i>/<i>z</i> Biological Ion Formation, Transmission, Analysis and Detection: A Personal Perspective.","authors":"Iain D G Campuzano, Joseph A Loo","doi":"10.1021/jasms.4c00348","DOIUrl":"10.1021/jasms.4c00348","url":null,"abstract":"<p><p>Mass spectrometry (MS) has become an essential tool in virtually all academic, pharmaceutical, and biopharmaceutical analytical laboratories. The specialized and bespoke area of MS research and application of high <i>m</i>/<i>z</i> ion (><i>m</i>/<i>z</i> 6000 and high mass, >150 kDa) formation, transmission, analysis, and detection is a relatively new area of focus for MS that has seen dramatic acceleration in interest over the last two decades. Herein we delve into this exciting aspect of MS, discussing how MS instrumentation has been refined and evolved for native-MS analysis. We cover the early groundbreaking experiments showing high <i>m</i>/<i>z</i> ion formation, transmission, and preservation of protein structure in the gas phase. Additionally, we discuss specific instrument optimizations and modifications that have advanced high <i>m</i>/<i>z</i> ion generation, transmission, analysis, and detection, contributing to the research area known as gas-phase structural biology. Native-MS sample introduction methods, emerging technologies, and future perspectives are also examined. Finally, we share personal opinions, observations, and experiences that are new to the community or previously unpublished.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"632-652"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen-Bo Gao, Shu-Ting Xu, Yong-Jie Yan, Cheng Yang, Xiu-Ping Yan
{"title":"Kinetic Method Coupled with Thermal-Assisted Paper Spray Ionization Mass Spectrometry for Direct Determination of Enantiomeric Excess of Multiple d/l-Amino Acids in Functional Foods.","authors":"Wen-Bo Gao, Shu-Ting Xu, Yong-Jie Yan, Cheng Yang, Xiu-Ping Yan","doi":"10.1021/jasms.5c00050","DOIUrl":"10.1021/jasms.5c00050","url":null,"abstract":"<p><p>Amino acids are commonly used as nutritional fortification substances in functional foods, and their chiral configuration is an important determinant of food function. Rapid chiral screening methods are urgently needed in food analysis but are limited by the long-time chiral separation and matrix interference. In this study, we show a kinetic method coupled to thermal-assisted paper spray ionization mass spectrometry for direct determination of enantiomeric excess (<i>ee</i>) of multiple d/l-amino acids in complex food matrixes without sample pretreatment. 3-(2-Naphthyl)-l-alanine was selected as a new chiral reference ligand for the kinetic method to achieve efficient chiral differentiation (discrimination degree is 8.7 for d/l-phenylalanine and 10.2 for d/l-tyrosine). An additional thermal-auxiliary device was developed for paper spray ionization mass spectrometry to facilitate the enantiomeric purity determination. The developed method allowed a rapid simultaneous enantiomeric purity determination of multiple chiral amino acids (d/l-phenylalanine and d/l-tyrosine) within 30 s. Good linearities were achieved for the quantitation of <i>ee</i> (<i>R</i><sup>2</sup> = 0.9996 for phenylalanine and 0.9995 for tyrosine) with unknown amino acid concentrations ranging from 10 μM to 600 μM. The developed method was successfully applied for the enantiomeric purity determination of multiple chiral amino acids in functional capsules and beverages and showed great potential for efficient enantiomer-related food safety screening and nutrition analysis.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"906-913"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Theresa Guillette, Whitney Stutts, Andrew Baumeister, David Liles, Theresa Olechiw, Johnsie Lang
{"title":"Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Mass Spectrometry Imaging of Per- and Polyfluoroalkyl Substances (PFAS) in Stabilized Soil Cores.","authors":"Theresa Guillette, Whitney Stutts, Andrew Baumeister, David Liles, Theresa Olechiw, Johnsie Lang","doi":"10.1021/jasms.4c00428","DOIUrl":"10.1021/jasms.4c00428","url":null,"abstract":"<p><p>Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) was coupled with high-resolution accurate-mass-mass spectrometry (HRAM-MS) to image perfluoroalkyl and polyfluoroalkyl substances (PFAS) in stabilized soil cores. Previous field-scale research demonstrated a substantial decrease in the leachability of PFAS following the application of in situ stabilization and solidification (S/S) in an aqueous film-forming foam (AFFF) source zone. While this previous study empirically confirmed the effectiveness of S/S, there was no definitive identification of the operative retention mechanisms. Therefore, the objective of this follow-on study was to (1) develop a high-resolution mass spectrometry-based imaging technique for PFAS on stabilized and background control soil cores and (2) determine if chemical characteristics of the amendments were associated spatially with the PFAS distribution within the soil cores at a micrometer scale. Intact frozen soil cores were imaged in negative ion mode, targeted and suspect screening analyses were conducted, features were identified using suspect lists, and analytes were presented as raw abundances matched against several databases. IR-MALDESI imaging results confirmed the colocation of PFOS and PFHxS with non-PFAS chemical features (e.g., mono- and diglycerides) associated with treatments including amendments, which suggests chemical fixation as a mechanism of stabilization for PFAS in stabilized soil cores.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"653-657"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ligand Conformational and Metal Coordination Isomers in Complexes of Metal Ions and Cyclic Depsipeptides.","authors":"Emmanuel Nkyaagye, Hernando J Olivos, Thanh D Do","doi":"10.1021/jasms.5c00010","DOIUrl":"10.1021/jasms.5c00010","url":null,"abstract":"<p><p>A critical challenge in the structural characterization of metal complexes in apolar environments is distinguishing transient structural isomers within an ensemble of lower- and higher-order assemblies. These structural variations arise from subtle changes in ligand architecture and metal coordination chemistry, which are often difficult to deconvolute. Here, we utilize ion activation in both drift-tube and cyclic ion mobility spectrometry-mass spectrometry (IMS-MS) to resolve ligand conformational isomerism and metal coordination isomerism in metal sandwich complexes of cyclic depsipeptide ligands known for selective metal ion transport. Our approach reveals that isomerism driven by ligand structural rearrangements exhibits low energy barriers, allowing their interconversion to be captured on the IMS-MS time scale. In contrast, isomers involving distinct metal coordination states are characterized by higher energy barriers, precluding rapid interconversion. These findings establish a direct correlation between isomer distributions and selective metal binding and transport, providing mechanistic insights into the biological functions of cyclic depsipeptides. This work underscores the utility of IMS-MS for disentangling complex structural dynamics in biologically relevant metal-peptide ligand systems.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"873-882"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vimanda Chow, Cristina Lento and Derek J. Wilson*,
{"title":"Probing the Interactions of Cytochrome c with Anionic Phospholipid Nanodiscs Using Millisecond Hydrogen–Deuterium Exchange Mass Spectrometry","authors":"Vimanda Chow, Cristina Lento and Derek J. Wilson*, ","doi":"10.1021/jasms.4c0047810.1021/jasms.4c00478","DOIUrl":"https://doi.org/10.1021/jasms.4c00478https://doi.org/10.1021/jasms.4c00478","url":null,"abstract":"<p >The interplay between the anionic phospholipid cardiolipin (CL) and cytochrome c (cyt c) holds significance in the early stages of apoptosis. Despite identification of up to four potential sites of interaction between cytochrome c and cardiolipin bearing membranes, the exact mode of interaction remains unexplained, especially given that some of the putative binding surfaces are mutually exclusive. In this study, we utilize millisecond time-resolved electrospray ionization hydrogen–deuterium exchange mass spectrometry (TRESI-HDX-MS) to investigate conformational and dynamic changes in cytochrome c in the presence of various phospholipids (DMPC, POPG, and CL) incorporated into nanodiscs. We observe that, among the proposed binding sites, the adjacent “L”- and “A”-sites exhibited a decrease in deuterium exchange, while the “N” site remained unperturbed, suggesting a specific orientation of cytochrome c with respect to cell membranes upon binding. We also demonstrate that negatively charged phospholipids with physical differences (<i>i.e</i>., POPG and CL) exhibit essentially the same interaction with cytochrome c, supporting the utility of POPG nanodiscs as a model for cytochrome c–membrane interactions.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 5","pages":"1052–1059 1052–1059"},"PeriodicalIF":3.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jasms.4c00478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143911254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}