2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)最新文献

筛选
英文 中文
Individual Difference of Ultrasonic Transducers for Parametric Array Loudspeaker 参数阵列扬声器超声换能器的个体差异
Shota Minami, Jun Kuroda, Yasuhiro Oikawa
{"title":"Individual Difference of Ultrasonic Transducers for Parametric Array Loudspeaker","authors":"Shota Minami, Jun Kuroda, Yasuhiro Oikawa","doi":"10.1109/ICASSP.2018.8462189","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8462189","url":null,"abstract":"A parametric array loudspeaker (PAL) consists of a lot of ultrasonic transducers in most cases and is driven by an ultrasonic which is modulated by audible sound. Because each ultrasonic transducer has each difference resonant frequency, there is the individual difference in ultrasonic transducers of a PAL in a manufacturing process. In this paper, two PALs are made of each set of transducers with large and small variance of resonant frequencies. Quality factor of PAL with the large variance of resonant frequencies is smaller than that of PAL with small variance, and the demodulated audible sound pressure level (SPL) is large and almost flat to 3 kHz in PAL with the large variance of resonant frequencies.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"48 1","pages":"486-490"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83428538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Harnessing Bandit Online Learning to Low-Latency Fog Computing 利用强盗在线学习低延迟雾计算
Tianyi Chen, G. Giannakis
{"title":"Harnessing Bandit Online Learning to Low-Latency Fog Computing","authors":"Tianyi Chen, G. Giannakis","doi":"10.1109/ICASSP.2018.8461641","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8461641","url":null,"abstract":"This paper focuses on the online fog computing tasks in the Internet-of-Things (IoT), where online decisions must flexibly adapt to the changing user preferences (loss functions), and the temporally unpredictable availability of resources (constraints). Tailored for such human-in-the-loop systems where the loss functions are hard to model, a family of bandit online saddle-point (BanSP) schemes are developed, which adaptively adjust the online operations based on (possibly multiple) bandit feedback of the loss functions, and the changing environment. Performance here is assessed by: i) dynamic regret that generalizes the widely used static regret; and, ii) fit that captures the accumulated amount of constraint violations. Specifically, BanSP is proved to simultaneously yield sub-linear dynamic regret and fit, provided that the best dynamic solutions vary slowly over time. Numerical tests on fog computing tasks corroborate that BanSP offers desired performance under such limited information.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"6418-6422"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80240597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
An Analytical Method to Determine Minimum Per-Layer Precision of Deep Neural Networks 一种确定深度神经网络最小逐层精度的解析方法
Charbel Sakr, Naresh R Shanbhag
{"title":"An Analytical Method to Determine Minimum Per-Layer Precision of Deep Neural Networks","authors":"Charbel Sakr, Naresh R Shanbhag","doi":"10.1109/ICASSP.2018.8461702","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8461702","url":null,"abstract":"There has been growing interest in the deployment of deep learning systems onto resource-constrained platforms for fast and efficient inference. However, typical models are overwhelmingly complex, making such integration very challenging and requiring compression mechanisms such as reduced precision. We present a layer-wise granular precision analysis which allows us to efficiently quantize pre-trained deep neural networks at minimal cost in terms of accuracy degradation. Our results are consistent with recent findings that perturbations in earlier layers are most destructive and hence needing more precision than in later layers. Our approach allows for significant complexity reduction demonstrated by numerical results on the MNIST and CIFAR-10 datasets. Indeed, for an equivalent level of accuracy, our fine-grained approach reduces the minimum precision in the network up to 8 bits over a naive uniform assignment. Furthermore, we match the accuracy level of a state-of-the-art binary network while requiring up to ~ 3.5 × lower complexity. Similarly, when compared to a state-of-the-art fixed-point network, the complexity savings are even higher (up to ~ 14×) with no loss in accuracy.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"124 1","pages":"1090-1094"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88035638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Kalman Filtering and Clustering in Sensor Networks 传感器网络中的卡尔曼滤波与聚类
S. Talebi, Stefan Werner, V. Koivunen
{"title":"Kalman Filtering and Clustering in Sensor Networks","authors":"S. Talebi, Stefan Werner, V. Koivunen","doi":"10.1109/ICASSP.2018.8462039","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8462039","url":null,"abstract":"In this work, a distributed Kalman filtering and clustering framework for sensor networks tasked with tracking multiple state vector sequences is developed. This is achieved through recursively updating the likelihood of a state vector estimation from one agent offering valid information about the state vector of its neighbors, given the available observation data. These likelihoods then form the diffusion coefficients, used for information fusion over the sensor network. For rigour, the mean and mean square behavior of the developed Kalman filtering and clustering framework is analyzed, convergence criteria are established, and the performance of the developed framework is demonstrated in a simulation example.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"32 1","pages":"4309-4313"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88550520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
End-to-End Multi-Speaker Speech Recognition 端到端多说话人语音识别
Shane Settle, Jonathan Le Roux, Takaaki Hori, Shinji Watanabe, J. Hershey
{"title":"End-to-End Multi-Speaker Speech Recognition","authors":"Shane Settle, Jonathan Le Roux, Takaaki Hori, Shinji Watanabe, J. Hershey","doi":"10.1109/ICASSP.2018.8461893","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8461893","url":null,"abstract":"Current advances in deep learning have resulted in a convergence of methods across a wide range of tasks, opening the door for tighter integration of modules that were previously developed and optimized in isolation. Recent ground-breaking works have produced end-to-end deep network methods for both speech separation and end-to-end automatic speech recognition (ASR). Speech separation methods such as deep clustering address the challenging cocktail-party problem of distinguishing multiple simultaneous speech signals. This is an enabling technology for real-world human machine interaction (HMI). However, speech separation requires ASR to interpret the speech for any HMI task. Likewise, ASR requires speech separation to work in an unconstrained environment. Although these two components can be trained in isolation and connected after the fact, this paradigm is likely to be sub-optimal, since it relies on artificially mixed data. In this paper, we develop the first fully end-to-end, jointly trained deep learning system for separation and recognition of overlapping speech signals. The joint training framework synergistically adapts the separation and recognition to each other. As an additional benefit, it enables training on more realistic data that contains only mixed signals and their transcriptions, and thus is suited to large scale training on existing transcribed data.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"38 1","pages":"4819-4823"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74298807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 63
How are the Centered Kernel Principal Components Relevant to Regression Task? -An Exact Analysis 中心核主成分是如何与回归任务相关的?——准确的分析
M. Yukawa, K. Müller, Yuto Ogino
{"title":"How are the Centered Kernel Principal Components Relevant to Regression Task? -An Exact Analysis","authors":"M. Yukawa, K. Müller, Yuto Ogino","doi":"10.1109/ICASSP.2018.8462392","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8462392","url":null,"abstract":"We present an exact analytic expression of the contributions of the kernel principal components to the relevant information in a nonlinear regression problem. A related study has been presented by Braun, Buhmann, and Müller in 2008, where an upper bound of the contributions was given for a general supervised learning problem but with “uncentered” kernel PCAs. Our analysis clarifies that the relevant information of a kernel regression under explicit centering operation is contained in a finite number of leading kernel principal components, as in the “uncentered” kernel-Pca case, if the kernel matches the underlying nonlinear function so that the eigenvalues of the centered kernel matrix decay quickly. We compare the regression performances of the least-square-based methods with the centered and uncentered kernel PCAs by simulations.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"2841-2845"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82497587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-Scale Regularized Sumcor GCCA via Penalty-Dual Decomposition 基于惩罚对偶分解的大规模正则化Sumcor GCCA
Charilaos I. Kanatsoulis, Xiao Fu, N. Sidiropoulos, Mingyi Hong
{"title":"Large-Scale Regularized Sumcor GCCA via Penalty-Dual Decomposition","authors":"Charilaos I. Kanatsoulis, Xiao Fu, N. Sidiropoulos, Mingyi Hong","doi":"10.1109/ICASSP.2018.8462354","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8462354","url":null,"abstract":"The sum-of-correlations (SUMCOR) generalized canonical correlation analysis (GCCA) aims at producing low-dimensional representations of multiview data via enforcing pairwise similarity of the reduced-dimension views. SUMCOR has been applied to a large variety of applications including blind separation, multilingual word embedding, and cross-modality retrieval. Despite the NP-hardness of SUMCOR, recent work has proposed effective algorithms for handling it at very large scale. However, the existing scalable algorithms are not easy to extend to incorporate structural regularization and prior information - which are critical for real-world applications where outliers and modeling mismatches are present. In this work, we propose a new computational framework for large-scale SUMCOR GCCA. The algorithm can easily incorporate a suite of structural regularizers which are frequently used in data analytics, has lightweight updates and low memory complexity, and can be easily implemented in a parallel fashion. The proposed algorithm is also guaranteed to converge to a Karush-Kuhn-Tucker (KKT) point of the regularized SUMCOR problem. Carefully designed simulations are employed to demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"7 1","pages":"6363-6367"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84153948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bitwise Neural Networks for Efficient Single-Channel Source Separation 高效单通道源分离的位神经网络
Minje Kim, P. Smaragdis
{"title":"Bitwise Neural Networks for Efficient Single-Channel Source Separation","authors":"Minje Kim, P. Smaragdis","doi":"10.1109/ICASSP.2018.8461824","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8461824","url":null,"abstract":"We present Bitwise Neural Networks (BNN) as an efficient hardware-friendly solution to single-channel source separation tasks in resource-constrained environments. In the proposed BNN system, we replace all the real-valued operations during the feedforward process of a Deep Neural Network (DNN) with bitwise arithmetic (e.g. the XNOR operation between bipolar binaries in place of multiplications). Thanks to the fully bitwise run-time operations, the BNN system can serve as an alternative solution where efficient real-time processing is critical, for example real-time speech enhancement in embedded systems. Furthermore, we also propose a binarization scheme to convert the input signals into bit strings so that the BNN parameters learn the Boolean mapping between input binarized mixture signals and their target Ideal Binary Masks (IBM). Experiments on the single-channel speech denoising tasks show that the efficient BNN-based source separation system works well with an acceptable performance loss compared to a comprehensive real-valued network, while consuming a minimal amount of resources.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"30 1","pages":"701-705"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78677812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Particle Filtering and Inference for Limit Order Books in High Frequency Finance 高频金融中限价订单的粒子滤波与推理
Pinzhang Wang, Lin Li, S. Godsill
{"title":"Particle Filtering and Inference for Limit Order Books in High Frequency Finance","authors":"Pinzhang Wang, Lin Li, S. Godsill","doi":"10.1109/ICASSP.2018.8462072","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8462072","url":null,"abstract":"This paper investigates the on-line analysis of high-frequency financial order book data using Bayesian modelling techniques. Order book data involves evolving queues of orders at different prices, and here we propose that the order book shape is proportional to a gamma or inverse-gamma density function. Inference for these models is implemented on-line using particle filters and evaluated on a high-frequency EURUSD foreign exchange limit order book. The two possible order book shapes are tested using particle filter marginal likelihood estimates and in addition, heat maps are constructed based on the inference results to reveal the imbalance of order distributions between the two sides of an order book, thereby offering valuable insights into the movements of future prices.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"55 1","pages":"4264-4268"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75292007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Identifying Susceptible Agents in Time Varying Opinion Dynamics Through Compressive Measurements 通过压缩测量识别时变意见动态中的敏感因素
Hoi-To Wai, A. Ozdaglar, A. Scaglione
{"title":"Identifying Susceptible Agents in Time Varying Opinion Dynamics Through Compressive Measurements","authors":"Hoi-To Wai, A. Ozdaglar, A. Scaglione","doi":"10.1109/ICASSP.2018.8462377","DOIUrl":"https://doi.org/10.1109/ICASSP.2018.8462377","url":null,"abstract":"We provide a compressive-measurement based method to detect susceptible agents who may receive misinformation through their contact with ‘stubborn agents’ whose goal is to influence the opinions of agents in the network. We consider a DeGroot-type opinion dynamics model where regular agents revise their opinions by linearly combining their neighbors' opinions, but stubborn agents, while influencing others, do not change their opinions. Our proposed method hinges on estimating the temporal difference vector of network-wide opinions, computed at time instances when the stubborn agents interact. We show that this temporal difference vector has approximately the same support as the locations of the susceptible agents. Moreover, both the interaction instances and the temporal difference vector can be estimated from a small number of aggregated opinions. The performance of our method is studied both analytically and empirically. We show that the detection error decreases when the social network is better connected, or when the stubborn agents are ‘less talkative’.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"36 1","pages":"4114-4118"},"PeriodicalIF":0.0,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77438276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信