Particle Filtering and Inference for Limit Order Books in High Frequency Finance

Pinzhang Wang, Lin Li, S. Godsill
{"title":"Particle Filtering and Inference for Limit Order Books in High Frequency Finance","authors":"Pinzhang Wang, Lin Li, S. Godsill","doi":"10.1109/ICASSP.2018.8462072","DOIUrl":null,"url":null,"abstract":"This paper investigates the on-line analysis of high-frequency financial order book data using Bayesian modelling techniques. Order book data involves evolving queues of orders at different prices, and here we propose that the order book shape is proportional to a gamma or inverse-gamma density function. Inference for these models is implemented on-line using particle filters and evaluated on a high-frequency EURUSD foreign exchange limit order book. The two possible order book shapes are tested using particle filter marginal likelihood estimates and in addition, heat maps are constructed based on the inference results to reveal the imbalance of order distributions between the two sides of an order book, thereby offering valuable insights into the movements of future prices.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"55 1","pages":"4264-4268"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates the on-line analysis of high-frequency financial order book data using Bayesian modelling techniques. Order book data involves evolving queues of orders at different prices, and here we propose that the order book shape is proportional to a gamma or inverse-gamma density function. Inference for these models is implemented on-line using particle filters and evaluated on a high-frequency EURUSD foreign exchange limit order book. The two possible order book shapes are tested using particle filter marginal likelihood estimates and in addition, heat maps are constructed based on the inference results to reveal the imbalance of order distributions between the two sides of an order book, thereby offering valuable insights into the movements of future prices.
高频金融中限价订单的粒子滤波与推理
本文研究了利用贝叶斯建模技术对高频金融订单数据进行在线分析。订单簿数据涉及不同价格的不断变化的订单队列,这里我们提出订单簿形状与gamma或逆gamma密度函数成正比。这些模型的推理使用粒子滤波器在线实现,并在高频欧元美元外汇限价订单簿上进行评估。使用粒子滤波边际似然估计对两种可能的订单形状进行测试,此外,基于推理结果构建热图,以揭示订单簿两侧订单分布的不平衡,从而为未来价格的走势提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信