{"title":"Thermodynamic Reassessment of the Binary Cu-Sn, Cu-P, and Sn-P and Ternary Cu-Sn-P Systems","authors":"Katsunari Oikawa, Nobufumi Ueshima","doi":"10.1007/s11669-024-01112-z","DOIUrl":"10.1007/s11669-024-01112-z","url":null,"abstract":"<div><p>The Cu-Sn-P phase diagram is essential for understanding the metallurgical phenomena of Cu-Sn bronze, brazing filler metals, and Sn-Cu lead-free solder. In this study, the solidus, liquidus temperatures and solubilities of P in the Cu-rich of the Cu-P system were determined using the electron probe micro-analyzer and differential scanning calorimetry. In addition, the thermodynamic assessment of the Cu-Sn, Cu-P, Sn-P, and Cu-Sn-P systems was carried out based on the results of previous studies and experiments of the current study. An associate-solution model was employed for the liquid phase, and an order/disorder model was employed for the bcc-based phase. The calculated phase diagrams and thermodynamic properties were in good agreement with the experimental data. The parameter set reproduced the Cu-Sn-P ternary phase diagrams without introducing ternary parameters into the liquid phase. Thus, the proposed model can reproduce the full-range of the compositional phase diagram of the Cu-Sn-P system.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"547 - 566"},"PeriodicalIF":1.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140981311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leyla F. Mashadiyeva, Dunya M. Babanly, Ziver T. Hasanova, Yusif A. Yusibov, Mahammad B. Babanly
{"title":"Phase Relations in the Cu-As-S System and Thermodynamic Properties of Copper-Arsenic Sulfides","authors":"Leyla F. Mashadiyeva, Dunya M. Babanly, Ziver T. Hasanova, Yusif A. Yusibov, Mahammad B. Babanly","doi":"10.1007/s11669-024-01115-w","DOIUrl":"10.1007/s11669-024-01115-w","url":null,"abstract":"<div><p>Here, a complete phase equilibria picture in the Cu-As-S system was obtained by experimental study of carefully crystallized via long-term thermal annealing alloys by means of methods of differential thermal analysis and powder x-ray diffraction, as well as using the available literature data. The projection of the liquidus surface, the isothermal section at 300 K, and some vertical sections of the phase diagram are presented and discussed. The fields of primary crystallization of phases, types, and coordinates of invariant and monovariant phase equilibria are determined. The presented phase diagram reflects four ternary compounds Cu<sub>3</sub>AsS<sub>4</sub>, Cu<sub>12</sub>As<sub>4</sub>S<sub>13</sub>, Cu<sub>6</sub>As<sub>4</sub>S<sub>9</sub>, and CuAsS, which are synthetic analogues of natural copper-arsenic sulfide minerals. Particular attention is paid to the Cu<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> section. It is shown that this section, in contrast to the literature data, is not quasi-binary. The thermodynamic data for copper-arsenic sulfides, previously obtained by the authors by the electromotive force method with Cu<sub>4</sub>RbCl<sub>3</sub>I<sub>2</sub> solid electrolyte, have also been revised. Experimental data on the partial thermodynamic functions of copper in some phase regions of the Cu-As-S system were processed taking into account the constructed new version of the solid-phase equilibria diagram and updated data on the standard thermodynamic functions of formation and standard entropies of the ternary compounds Cu<sub>3</sub>AsS<sub>4</sub>, Cu<sub>12</sub>As<sub>4</sub>S<sub>13</sub>, Cu<sub>6</sub>As<sub>4</sub>S<sub>9</sub>, and CuAsS were obtained.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"567 - 582"},"PeriodicalIF":1.5,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Re-investigation of the Phase Equilibria and Thermodynamic Assessment of the Mg-Sm Binary System","authors":"Ruyi Jiang, Xiaofen Duan, Dashi Li, Cuiyun He","doi":"10.1007/s11669-024-01111-0","DOIUrl":"10.1007/s11669-024-01111-0","url":null,"abstract":"<div><p>The Mg-Sm phase diagram has been experimentally studied by x-ray diffraction, scanning electron microscope equipped with energy dispersive spectrometer, and differential scanning calorimetry. Five binary compounds, Mg<sub>41</sub>Sm<sub>5</sub>, Mg<sub>5</sub>Sm, Mg<sub>3</sub>Sm, Mg<sub>2</sub>Sm and MgSm were confirmed to exist in the Mg-Sm system. In addition to Mg<sub>2</sub>Sm and MgSm, Mg<sub>3</sub>Sm was found to be a congruently melting phase. The Mg<sub>5</sub>Sm and Mg<sub>2</sub>Sm were found to be only stable at high temperatures and decompose above 400 °C in this work. A special effort was made to determine the extent of the solid solubility ranges of Mg<sub>3</sub>Sm, Mg<sub>2</sub>Sm, MgSm and, <i>γ</i>-Sm. The Mg-Sm binary system was modeled using the Calphad approach based on new experimental data of this work and all reliable experimental information from literature. A complete thermodynamic description of the Mg-Sm system is obtained and extensive comparisons between calculated and experimental data are presented, indicating that almost all available experimental and theoretical data are fitted satisfactorily.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"520 - 536"},"PeriodicalIF":1.5,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Palumbo, E. M. Dematteis, L. Fenocchio, G. Cacciamani, M. Baricco
{"title":"Advances in CALPHAD Methodology for Modeling Hydrides: A Comprehensive Review","authors":"M. Palumbo, E. M. Dematteis, L. Fenocchio, G. Cacciamani, M. Baricco","doi":"10.1007/s11669-024-01113-y","DOIUrl":"10.1007/s11669-024-01113-y","url":null,"abstract":"<div><p>Hydrides enable handling hydrogen at low pressure and near room temperature, offering higher volumetric densities than compressed or liquid hydrogen and enhancing safety. The CALPHAD method, rooted in the principles of thermodynamics, offers a systematic approach for predicting phase equilibria and thermodynamic properties in multicomponent materials. This comprehensive review paper aims to provide a detailed overview of the application of the CALPHAD method in the realm of metallic and complex hydrides. After an introduction to the fundamental thermodynamic aspects of hydrides, key elements of applying the CALPHAD method to model metal-hydrogen systems and complex hydrides are discussed. Subsequently, recent publications are reviewed, highlighting key findings and recent progresses in the field. Finally, the challenges that must be overcome to achieve further progress in this area are explored.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"273 - 289"},"PeriodicalIF":1.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-024-01113-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic Evaluation of the Fe-Zn Binary System with Reference to the Latest Experimental Phase Diagram","authors":"Ikuo Ohnuma, Kwangsik Han, Inho Lee, Takako Yamashita, Ryosuke Kainuma","doi":"10.1007/s11669-024-01110-1","DOIUrl":"10.1007/s11669-024-01110-1","url":null,"abstract":"<div><p>The phase diagram of the Fe-Zn binary system was evaluated based on the CALPHAD method with reference to the latest experimental data. The solubility ranges of the intermetallic compound phases, Γ-Fe<sub>4</sub>Zn<sub>9</sub>, Γ<sub>1</sub>-Fe<sub>11</sub>Zn<sub>40</sub>, δ<sub>1k</sub>-FeZn<sub>7</sub>, δ<sub>1p</sub>- Fe<sub>13</sub>Zn<sub>126</sub>, and ζ-FeZn<sub>13</sub> were modeled considering their structures consisting of Zn<sub>12</sub> icosahedra with Fe at the center (Fe<sub>1</sub>Zn<sub>12</sub> clusters) as well as glue-like Fe and Zn atoms, and the miscibility gap between the δ<sub>1k</sub> and δ<sub>1p</sub> phases was also taken into account in the present calculations. The solubility of Fe in the liquid and (ηZn) phases that was confirmed as dozens of times larger than the values reported in the earlier literature could be calculated by introducing Fe<sub>1</sub>Zn<sub>12</sub> associates to these solution phases. Consequently, all phase equilibria were adequately reproduced by the thermodynamic models and parameters revised in the present study.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"537 - 546"},"PeriodicalIF":1.5,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Singular Interfacial Structures at Two Levels: Their Roles in the Development of Phase Transformation Crystallography","authors":"Wenzheng Zhang","doi":"10.1007/s11669-024-01107-w","DOIUrl":"10.1007/s11669-024-01107-w","url":null,"abstract":"<div><p>Faceted morphology is common in the microstructures resulting from solid-state phase transformations in a wide range of crystalline materials. This study explains the faceted interfaces based on the concept of singular interfaces, which are characterized by key interfacial structures at two levels: the singular dislocation structure and the preferred state existing between the dislocations. It identifies interface geometries required by these structures at two stages: before and after dislocation generation. Methods to determine the interface geometries are reviewed. These methods enable quantitative interpretation of phase transformation crystallography features, including the interface orientations and the orientation relationship between the two phases, irrespective of whether these features are described as rational or irrational. The agreement achieved across different systems indicates the crucial role of geometric matching in the development of phase transformation crystallography. An example is provided for an illustration of the application of the two-stage approach, especially with an analysis in reciprocal space using a superimposed diffraction pattern.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"256 - 272"},"PeriodicalIF":1.5,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First Principles Evaluation of Phase Stability in the In-Sn Binary System","authors":"Michael Widom","doi":"10.1007/s11669-024-01109-8","DOIUrl":"10.1007/s11669-024-01109-8","url":null,"abstract":"<div><p>The In-Sn binary alloy system exhibits several unusual features that challenge crystallographic and thermodynamic expectations. We combine first principles total energy calculation with simple thermodynamic modeling to address two key points. First, we evaluate energies along the Bain path to interpret the discontinuous transition between the phases α-In (Pearson type tI2) and β-In<sub>3</sub>Sn (also Pearson type tI2) that are identical in symmetry. Second, we demonstrate that the solid solution phases β-In<sub>3</sub>Sn and γ-InSn<sub>4</sub> (Pearson type hP1) exist at high temperatures only, and they exhibit eutectoid decompositions at low temperatures.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"514 - 519"},"PeriodicalIF":1.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-024-01109-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Haußmann, J. Bresler, S. Neumeier, F. Pyczak, M. Göken
{"title":"Interdiffusion Coefficients and Strengthening Effects of Nb, Ta, and Zr in the α2-Ti3Al Phase","authors":"L. Haußmann, J. Bresler, S. Neumeier, F. Pyczak, M. Göken","doi":"10.1007/s11669-024-01105-y","DOIUrl":"10.1007/s11669-024-01105-y","url":null,"abstract":"<div><p>The creep properties of fully lamellar γ/α<sub>2</sub> titanium aluminides can be significantly improved by alloying with Nb, Ta or Zr. While the influence of these alloying elements on the γ-phase has already been examined, their diffusivity and strengthening properties in the α<sub>2</sub>-phase are still lacking. In order to study the effect of Nb, Ta and Zr in α<sub>2</sub>-Ti<sub>3</sub>Al, the alloys Ti-33Al, Ti-33Al-5Nb, Ti-33Al-5Ta and Ti-33Al-5Zr were investigated using a diffusion couple approach and strain rate jump tests. The results show that Zr diffuses the fastest, followed by Nb and Ta. Furthermore, these alloying elements also increase the strength compared to a binary Ti-33Al alloy, from which Zr leads to the highest strength increase followed by Ta and Nb. The lower diffusivity of Ta becomes increasingly important at higher temperatures and lower strain rates resulting in a higher strengthening potential than Nb and Zr under such conditions.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 4","pages":"764 - 771"},"PeriodicalIF":1.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-024-01105-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cuiping Wang, Debin Zheng, Zhangcan Zheng, Lianzhang Wu, Jianping Le, Yihui Guo, Yixiong Huang, Jinbin Zhang, Yong Lu, Xingjun Liu
{"title":"Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the Al-Ta-V Ternary System","authors":"Cuiping Wang, Debin Zheng, Zhangcan Zheng, Lianzhang Wu, Jianping Le, Yihui Guo, Yixiong Huang, Jinbin Zhang, Yong Lu, Xingjun Liu","doi":"10.1007/s11669-024-01102-1","DOIUrl":"10.1007/s11669-024-01102-1","url":null,"abstract":"<div><p>The phase equilibria in the Al-Ta-V ternary system at 1000 °C and 1200 °C have been studied by using electron probe microanalysis and x-ray diffraction. τ-Al<sub>2.9</sub>Ta<sub>2.7</sub>V<sub>1.4</sub> phase was found in the Al-Ta-V ternary system in both isothermal sections. The addition of V stabilizes the Al<sub>69</sub>Ta<sub>39</sub> phase at 1000 °C. The line compound Al<sub>3</sub>(V,Ta) (D0<sub>22</sub>-type) forms a continuous phase region from the Al-V side to the Al-Ta side at the two temperatures. Based on our experimental results, reported liquidus projection of the ternary Al-Ta-V system and thermodynamic data of the binary systems of Al-V, Al-Ta and V-Ta, a thermodynamic evaluation of Al-Ta-V system was carried out by CALPHAD method. A set of reliable thermodynamic parameters for the Al-Ta-V system was obtained. The current calculation results agree well with the available experimental data. The invariant reaction scheme of Al-Ta-V ternary system was presented. The present study could provide essential experimental and thermodynamic data for establishing a comprehensive Co-based superalloy database.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 2","pages":"156 - 174"},"PeriodicalIF":1.5,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Bulanova, I. Fartushna, A. Samelyuk, K. Meleshevich, J.–C. Tedenac
{"title":"Phase Equilibria in the Ti-Rich Portion of the Ti-Ga-Sn System","authors":"M. Bulanova, I. Fartushna, A. Samelyuk, K. Meleshevich, J.–C. Tedenac","doi":"10.1007/s11669-024-01100-3","DOIUrl":"10.1007/s11669-024-01100-3","url":null,"abstract":"<div><p>Phase equilibria of the Ti-Ga-Sn system have been determined at primary crystallization and at 1000 °C in the composition interval ~ 50-100 at.% Ti based on differential thermal analysis, x-ray powder diffraction, scanning electron microscopy and electron microprobe analysis. Partial liquidus and solidus projections, the melting diagram, a number of vertical sections, isothermal section at 1000 °C, as well as the reaction scheme (Scheil diagram) for the Ti-Ga-Sn system were constructed. A ternary compound Ti<sub>5</sub>GaSn<sub>2</sub> (τ) (Nb<sub>5</sub>SiSn<sub>2</sub>-type structure, <i>tI</i>32-<i>I</i>4/<i>mcm</i>), found by us previously, forms by peritectic reaction L + Ti<sub>2</sub>(Sn, Ga) + Ti<sub>5</sub>(Sn, Ga)<sub>3-4</sub> ⇄ τ at 1500 °C and has a wide homogeneity range from 9 to 23.5 at.% Ga at solidus temperature and from 4 to 34 at.% Ga at 1000 °C, and located along constant composition of ~ 62.5 at.% Ti. D8<sub>8</sub>-type compounds Ti<sub>5</sub>Sn<sub>3</sub> and Ti<sub>5</sub>Ga<sub>4</sub> form a continuous solid solution, denoted Ti<sub>5</sub>(Sn, Ga)<sub>3-4</sub>, at all investigated temperatures. Ga-poor part of it (below ~ 12.5 at.% Ga) forms by an interstitial mechanism, while in the interval above ~ 12.5 at.% Ga it is a substitutional phase. Isostructural compounds Ti<sub>2</sub>Sn and Ti<sub>2</sub>Ga also form a continuous solid solution Ti<sub>2</sub>(Sn, Ga) at solidus temperatures, which decomposes with decreasing temperature. Meanwhile, at 1000 °C, one more continuous solid solution Ti<sub>3</sub>(Sn, Ga) forms between isostructural compounds Ti<sub>3</sub>Sn and Ti<sub>3</sub>Ga.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 2","pages":"132 - 155"},"PeriodicalIF":1.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}