{"title":"Stability of a reactor with Niederlinski criterion using RGA matrices","authors":"Macarena Boix, Begoña Cantó, Maria T. Gassó","doi":"10.1007/s10910-024-01672-y","DOIUrl":"10.1007/s10910-024-01672-y","url":null,"abstract":"<div><p>This paper considers a distillation column used in heavy crude oil separation where pairings exhibit negative Niederlinski Index values, potentially leading to system instability. In this study, we address this issue by constructing a Relative Gain Array matrix from a transfer matrix of order 3. We employ mathematical techniques to steer the system towards stability. Through subtle modifications to matrix entries, we achieve stable configurations.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"210 - 221"},"PeriodicalIF":1.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamical behaviors of a stochastic multi-molecule biochemical reaction model with Ornstein-Uhlenbeck process","authors":"Ying Yang, Jing Guo","doi":"10.1007/s10910-024-01653-1","DOIUrl":"10.1007/s10910-024-01653-1","url":null,"abstract":"<div><p>In this paper, we develop a stochastic multi-molecule chemical reaction model with reaction rate perturbed by log-normal <span>(Ornstein-Uhlenbeck)</span> process in order to consider the effects of random factors on chemical reaction dynamics. Firstly, we prove the existence and uniqueness of the global positive solution for the stochastic model. In addition, we obtain the conditions under which the corresponding stochastic system exist a stationary distribution. Then, we derive a sufficient condition to end the reaction. Furthermore, the stochastic system has been transformed into a linearized system, by solving <span>(Fokker-Planck)</span> equation, we obtain the exact expression of the density function around the quasi-equilibrium of this system. Finally, we draw a conclusion that the dynamical behaviors of the stochastic system will be affected by random factor, <span>(Ornstein-Uhlenbeck)</span> process respectively</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"161 - 180"},"PeriodicalIF":1.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing understanding of molecular interactions: computational studies on DNA nucleobases and gold nanoparticles using density functional theory","authors":"Saurav Mishra, Brijesh Kumar Pandey, Jyoti Gupta","doi":"10.1007/s10910-024-01659-9","DOIUrl":"10.1007/s10910-024-01659-9","url":null,"abstract":"<div><p>Molecular interactions aid in our understanding of how proteins function and behave. As they can help us predict the biological functions of unknown proteins in living organisms in this work, DNA nucleobases are studied, which can assist us in characterizing protein complexes, cellular pathways, and functional modules. Density functional theory examines how different gold nanoparticles interact with DNA nucleobase monomers (DFT). At B3LYP, the 6-311-G basis set was used to optimize the molecular geometries of various nucleobases. At LANL2DZ as the basis set, molecular geometries of diverse gold nanoparticles are optimized. At standard pressure and temperature, binding energy, interaction energy, and Bandgap were estimated along with its IR and UV spectrum were studied. Our simulation results clearly show that the hydrogen bondings are intensified and more likely to occur as the size of the nucleobases and gold nanoparticles increases. Hydrogen bonding is also essential for the delivery of medications and the sequencing of genes in molecules. In our computational investigations, the interaction between different DNA nucleobases and gold nanoparticles is examined to find out how other nucleobases are affected by gold nanoparticles. The interaction between gold nanoparticles and diverse nucleobases is investigated to understand the behavior of nanoparticles with different nucleobases. The molecule composed of six gold atoms was discovered to be the most stable of all the optimized gold compounds. Our computational results can be explained by the polarization of gold molecules and their electronic energy.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"132 - 149"},"PeriodicalIF":1.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-principle insight on the electronics and structural properties of lanthanide metal doped BaZrO3","authors":"Priyanshi Gaur, Brijesh Kumar Pandey, Priyanshu Srivastava","doi":"10.1007/s10910-024-01666-w","DOIUrl":"10.1007/s10910-024-01666-w","url":null,"abstract":"<div><p>An oxide of the perovskite type, barium zirconate (BaZrO3), has attracted a lot of interest for use as a potential candidate for electrolyte of solid oxide fuel cells (SOFCs) that conduct protons. The perovskite crystal structure of BaZrO3 is well-known for its adaptability in accepting various dopants and preserving stability in a range of circumstances. BaZrO3 is appropriate for the severe operating conditions of SOFCs because it is chemically stable in both reducing and oxidizing environments. When doped, BaZrO3 acts as an electrolyte that conducts protons. Protons (H+), which travel through the crystal structure to complete the fuel cell circuit, are the main charge carriers in these materials. BaZrO3 can function at lower temperatures, which lessens thermal stress and lengthens the life of fuel cells. Additionally, a greater variety of fuels, including ones with higher hydrogen contents, are permitted. The examination of the mechanism underlying the enhanced performance requires the atomic knowledge. We have used the ab-initio DFT computation for that. Band-gap and electrochemical stability assessments have been made more accurate by using Grimme d3 dispersion correction and PBE. A distinct metric, the global instability index (GII), was employed to evaluate the thermodynamic stability of BaZrO3 and the doped structures. It bases its calculation on the bond valence sum technique utilized in SoftBV. All DFT calculations were carried out using Quantum ESPRESSO pwscf codes. XCrySDen and VESTA, two open-source programs, were used to create all of the visuals.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"150 - 160"},"PeriodicalIF":1.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical solution to loaded difference scheme for time-fractional diffusion equation with temporal loads","authors":"Shweta Kumari, Mani Mehra","doi":"10.1007/s10910-024-01658-w","DOIUrl":"10.1007/s10910-024-01658-w","url":null,"abstract":"<div><p>This paper investigates the temporally loaded time-fractional diffusion equation with initial and Dirichlet-type boundary conditions. To begin with, a solution form is established using the method of eigenfunction expansions, and its existence and uniqueness are examined along with some apriori estimates. Thereafter, a finite difference approximation is performed using the so-called <i>L</i>1 method for the Caputo fractional derivative, resulting in a loaded difference scheme. The superposition property of systems of linear algebraic equations is applied to solve the loaded difference scheme by appointing an appropriate solution representation. The unique solvability of the proposed scheme is set up. The stability and convergence of the proposed difference scheme are analysed by the discrete energy method with an order of accuracy <span>(mathcal {O}(tau ^{2-alpha }+h^2))</span>. Numerical results via two test problems are presented to validate the theoretical findings of the proposed scheme by observing the errors.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"105 - 131"},"PeriodicalIF":1.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On properties of the first inverse Nirmala index","authors":"Boris Furtula, Mert Sinan Oz","doi":"10.1007/s10910-024-01665-x","DOIUrl":"10.1007/s10910-024-01665-x","url":null,"abstract":"<div><p>The first inverse Nirmala index is a novel degree-based topological descriptor that was introduced in 2021. Preliminary QSPR investigations suggest that this index deserves further consideration because of its unusually good predictive potential. This paper investigates the relations between this index with some elementary graph quantities and some related degree-based topological index. Further, the computational analysis will reveal extremal graphs among trees, molecular trees, all connected graphs, and their molecular counterparts.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"96 - 104"},"PeriodicalIF":1.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Why local softness and local hyper–softness are more appropriate local reactivity descriptors than dual descriptor and Fukui functions?","authors":"Jorge I. Martínez-Araya","doi":"10.1007/s10910-024-01662-0","DOIUrl":"10.1007/s10910-024-01662-0","url":null,"abstract":"","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 9","pages":"2368 - 2369"},"PeriodicalIF":1.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Q-rényi’s divergence as a possible chemical similarity criterion","authors":"L. Flores-Gómez, N. Flores-Gallegos","doi":"10.1007/s10910-024-01663-z","DOIUrl":"10.1007/s10910-024-01663-z","url":null,"abstract":"<div><p>In this work, we introduce the <i>q</i>-Rényi’s divergence, which results from the conjunction of Rényi’s divergence and Jackson’s integral. The resultant equation can be employed as a measure of chemical similarity, which consists of comparing two or more chemical species with a set of molecules that have been characterized to find two or more molecules that could have similar chemical or physical properties. To carry out our study, we applied <i>q</i>-Rényi’s divergence using a set of Tetrodotoxin variants and a set of 1641 organic molecules. Our results suggest that <i>q</i>-Rényi’s divergence could be a valuable tool to complement chemical similarity studies.\u0000</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"73 - 95"},"PeriodicalIF":1.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical solution of one- and two-dimensional Hyperbolic Telegraph equation via Cubic–Quartic Hyperbolic B-Spline DQM: a statistical validity","authors":"Mamta Kapoor","doi":"10.1007/s10910-024-01652-2","DOIUrl":"10.1007/s10910-024-01652-2","url":null,"abstract":"<div><p>In present research work, numerical approx. of one- and two-dimensional Hyperbolic Telegraph equations is fetched with aid of Modified Cubic and Quartic Hyperbolic B-spline Differential Quadrature Methods. Modified cubic B-spline is used in Differential Quadrature Method to find weighting coefficients for Method I. Modified Quartic Hyperbolic B-spline is utilized to attain weighting coefficients for Method II. After spatial discretization partial differential equations got reduced in the system of ODEs, which later on tackled with SSPRK43 regime. Total ten Examples are discussed to check the efficacy and robustness of the implemented method. For comparison of results, error norms are evaluated. Graphical presentation of the results is also provided. It got noticed that, in most of the cases, exact solutions and present numerical solutions were compatible. The present scheme is easy to implement and it is a better approach to solve some complex natured partial differential equations. The cubic Hyperbolic B-spline has produced much better errors than the Quartic Hyperbolic B-spline. The statistical validation of the parameters is also provided via generating the correlation matrix heatmap.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"39 - 72"},"PeriodicalIF":1.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: The dual descriptor potential","authors":"Jorge I. Martínez-Araya","doi":"10.1007/s10910-024-01661-1","DOIUrl":"10.1007/s10910-024-01661-1","url":null,"abstract":"","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 8","pages":"2081 - 2082"},"PeriodicalIF":1.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}