{"title":"论第一逆尼玛拉指数的性质","authors":"Boris Furtula, Mert Sinan Oz","doi":"10.1007/s10910-024-01665-x","DOIUrl":null,"url":null,"abstract":"<p>The first inverse Nirmala index is a novel degree-based topological descriptor that was introduced in 2021. Preliminary QSPR investigations suggest that this index deserves further consideration because of its unusually good predictive potential. This paper investigates the relations between this index with some elementary graph quantities and some related degree-based topological index. Further, the computational analysis will reveal extremal graphs among trees, molecular trees, all connected graphs, and their molecular counterparts.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"109 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On properties of the first inverse Nirmala index\",\"authors\":\"Boris Furtula, Mert Sinan Oz\",\"doi\":\"10.1007/s10910-024-01665-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The first inverse Nirmala index is a novel degree-based topological descriptor that was introduced in 2021. Preliminary QSPR investigations suggest that this index deserves further consideration because of its unusually good predictive potential. This paper investigates the relations between this index with some elementary graph quantities and some related degree-based topological index. Further, the computational analysis will reveal extremal graphs among trees, molecular trees, all connected graphs, and their molecular counterparts.</p>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10910-024-01665-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10910-024-01665-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The first inverse Nirmala index is a novel degree-based topological descriptor that was introduced in 2021. Preliminary QSPR investigations suggest that this index deserves further consideration because of its unusually good predictive potential. This paper investigates the relations between this index with some elementary graph quantities and some related degree-based topological index. Further, the computational analysis will reveal extremal graphs among trees, molecular trees, all connected graphs, and their molecular counterparts.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.