Journal of Animal Science and Biotechnology最新文献

筛选
英文 中文
Epigallocatechin-3-gallate protects bovine ruminal epithelial cells against lipopolysaccharide-induced inflammatory damage by activating autophagy. 表没食子儿茶素-3-棓酸盐通过激活自噬保护牛瘤胃上皮细胞免受脂多糖诱发的炎症损伤。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-09 DOI: 10.1186/s40104-024-01066-9
Wanli Zhao, Taiyu Shen, Bichen Zhao, Moli Li, Zhaoju Deng, Yihui Huo, Ben Aernouts, Juan J Loor, Androniki Psifidi, Chuang Xu
{"title":"Epigallocatechin-3-gallate protects bovine ruminal epithelial cells against lipopolysaccharide-induced inflammatory damage by activating autophagy.","authors":"Wanli Zhao, Taiyu Shen, Bichen Zhao, Moli Li, Zhaoju Deng, Yihui Huo, Ben Aernouts, Juan J Loor, Androniki Psifidi, Chuang Xu","doi":"10.1186/s40104-024-01066-9","DOIUrl":"10.1186/s40104-024-01066-9","url":null,"abstract":"<p><strong>Background: </strong>Subacute ruminal acidosis (SARA) causes an increase in endotoxin, which can induce immune and inflammatory responses in the ruminal epithelium of dairy cows. In non-ruminants, epigallocatechin-3-gallate (EGCG), a major bioactive ingredient of green tea, is well-known to alleviate inflammation. Whether EGCG confers protection against SARA-induced inflammation and the underlying mechanisms are unknown.</p><p><strong>Results: </strong>In vivo, eight ruminally cannulated Holstein cows in mid-lactation were randomly assigned to either a low-concentrate (40%) diet (CON) or a high-concentrate (60%) diet (HC) for 3 weeks to induce SARA (n = 4). Cows with SARA had greater serum concentrations of tumor necrosis factor (TNF)-α and interleukin-6, and epithelium had histological signs of damage. In vitro, immortalized bovine ruminal epithelial cells (BREC) were treated with lipopolysaccharide (LPS) to imitate the inflammatory damage caused by SARA. Our data revealed that BREC treated with 10 µg/mL LPS for 6 h successfully induce a robust inflammatory response as indicated by increased phosphorylation of IκBα and nuclear factor kappa-B (NF-κB) p65. Pre-treatment of BREC with 50 µmol/L EGCG for 6 h before LPS challenge promoted the degradation of NLR family pyrin domain containing 3 (NLRP3) inflammasome through activation of autophagy, which further repressed activation of NF-κB pathway targeting Toll-like receptor 4 (TLR4). Analyses also revealed that the ECGG upregulated tight junction (TJ) protein expression upon incubation with LPS.</p><p><strong>Conclusions: </strong>Subacute ruminal acidosis causes ruminal epithelium injury and systemic inflammation in dairy cows. However, the anti-inflammatory effects of EGCG help preserve the integrity of the epithelial barrier through activating autophagy when BREC are exposed to LPS. Thus, EGCG could potentially serve as an effective therapeutic agent for SARA-associated inflammation.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin alleviates palmitic acid-induced mitochondrial dysfunction by reducing oxidative stress and enhancing autophagy in bovine endometrial epithelial cells. 褪黑素通过减少氧化应激和增强牛子宫内膜上皮细胞的自噬作用,缓解棕榈酸诱导的线粒体功能障碍。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-08 DOI: 10.1186/s40104-024-01064-x
Yi Wang, Jianfei Gong, Nuo Heng, Yingfan Hu, Rui Wang, Huan Wang, Wei He, Ni Zhu, Zhihui Hu, Haisheng Hao, Huabin Zhu, Shanjiang Zhao
{"title":"Melatonin alleviates palmitic acid-induced mitochondrial dysfunction by reducing oxidative stress and enhancing autophagy in bovine endometrial epithelial cells.","authors":"Yi Wang, Jianfei Gong, Nuo Heng, Yingfan Hu, Rui Wang, Huan Wang, Wei He, Ni Zhu, Zhihui Hu, Haisheng Hao, Huabin Zhu, Shanjiang Zhao","doi":"10.1186/s40104-024-01064-x","DOIUrl":"10.1186/s40104-024-01064-x","url":null,"abstract":"<p><strong>Background: </strong>Negative energy balance (NEB) typically occurs in dairy cows after delivery. Cows with a high yield are more likely to experience significant NEB. This type of metabolic imbalance could cause ketosis, which is often accompanied by a decline in reproductive performance. However, the molecular mechanisms underlying NEB have yet to be fully elucidated. During excessive NEB, the body fat is extensively broken down, resulting in the abnormal accumulation of non-esterified fatty acids (NEFAs), represented by palmitic acid (PA), within the uterus. Such an abnormal accumulation has the potential to damage bovine endometrial epithelial cells (BEECs), while the molecular mechanisms underlying its involvement in the PA-induced injury of BEECs remains poorly understood. Melatonin (MT) is recognized for its regulatory role in maintaining the homeostasis of mitochondrial reactive oxygen species (mitoROS). However, little is known as to whether MT could ameliorate the damage incurred by BEECs in response to PA and the molecular mechanism involved.</p><p><strong>Results: </strong>Analysis showed that 0.2 mmol/L PA stress increased the level of cellular and mitochondrial oxidative stress, as indicated by increased reactive oxygen species (ROS) level. In addition, we observed mitochondrial dysfunction, including abnormal mitochondrial structure and respiratory function, along with a reduction in mitochondrial membrane potential and mitochondrial copy number, and the induction of apoptosis. Notably, we also observed the upregulation of autophagy proteins (PINK, Parkin, LC3B and Ubiquitin), however, the P62 protein was also increased. As we expected, 100 μmol/L of MT pre-treatment attenuated PA-induced mitochondrial ROS and restored mitochondrial respiratory function. Meanwhile, MT pretreatment reversed the upregulation of P62 induced by PA and activated the AMPK-mTOR-Beclin-1 pathway, contributing to an increase of autophagy and decline apoptosis.</p><p><strong>Conclusions: </strong>Our findings indicate that PA can induce mitochondrial dysfunction and enhance autophagy in BEECs. In addition, MT is proved to not only reduce mitochondrial oxidative stress but also facilitate the clearance of damaged mitochondria by upregulating autophagy pathways, thereby safeguarding the mitochondrial pool and promoting cellular viability. Our study provides a better understanding of the molecular mechanisms underlying the effect of an excess of NEB on the fertility outcomes of high yielding dairy cows.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of bacteriocin-producing Lactiplantibacillus plantarum on bacterial community and fermentation profile of whole-plant corn silage and its in vitro ruminal fermentation, microbiota, and CH4 emissions. 产生细菌素的植物乳杆菌对全株玉米青贮的细菌群落和发酵概况及其体外瘤胃发酵、微生物群和甲烷排放的影响
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-07 DOI: 10.1186/s40104-024-01065-w
Ziqian Li, Samaila Usman, Jiayao Zhang, Yixin Zhang, Rina Su, Hu Chen, Qiang Li, Mengya Jia, Tunde Adegoke Amole, Xusheng Guo
{"title":"Effects of bacteriocin-producing Lactiplantibacillus plantarum on bacterial community and fermentation profile of whole-plant corn silage and its in vitro ruminal fermentation, microbiota, and CH<sub>4</sub> emissions.","authors":"Ziqian Li, Samaila Usman, Jiayao Zhang, Yixin Zhang, Rina Su, Hu Chen, Qiang Li, Mengya Jia, Tunde Adegoke Amole, Xusheng Guo","doi":"10.1186/s40104-024-01065-w","DOIUrl":"10.1186/s40104-024-01065-w","url":null,"abstract":"<p><strong>Background: </strong>Silage is widely used to formulate dairy cattle rations, and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production systems. Bacteriocin has received considerable attention because of its potential as an alternative to antibiotics in animal husbandry. However, the impact of bacteriocin-producing lactic acid bacteria on the microbiological conversion process of whole-plant corn silage and rumen fermentation remains limited. The purpose of this study was to assess the effect of 2 class IIa bacteriocin-producing strains Lactiplantibacillus plantarum ATCC14917 and CICC24194 on bacterial community composition and ensiling profiles of whole-plant corn silage and its in vitro rumen fermentation, microbiota, and CH<sub>4</sub> emissions.</p><p><strong>Results: </strong>Both bacteriocin-producing strains increased the lactic acid concentration in silage fermented for 7 d, whereas the lowest lactic acid was observed in the ATCC14917 inoculated silage fermented for 90 d (P < 0.05). The highest DM content was observed in the CICC24194 treatment (P < 0.05), and the silages treated with both strains had the lowest DM loss (P < 0.05). Bacteriocin-producing strains promoted the growth of Levilactobacillus brevis on d 60 of ensiling. In addition, treatment with bacteriocin-producing strains increased the in vitro DM digestibility (P < 0.05) and decreased the CH<sub>4</sub> production (P < 0.05). The results of random forest and clustering analyses at the genus level showed that ATCC14917 increased the relative abundance of the influential variable Bacillus compared to that in the control group, whereas CICC24194 decreased the relative abundance of the influential variable Ruminococcaceae UCG-005. The CICC24194 treatment had the lowest total bacterial, fungal, protozoan, and methanogen populations (P < 0.05).</p><p><strong>Conclusions: </strong>Both class IIa bacteriocin-producing L. plantarum strains improved the fermentation quality of whole-plant corn silage by regulating the bacterial community composition during ensiling, with CICC24194 being the most effective. Both bacteriocin-producing strains mitigated CH<sub>4</sub> production and improved digestibility by modulating the interactions among rumen bacteria, protozoa, methanogens, and the composition of fibrolytic bacteria.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astragalus polysaccharides-induced gut microbiota play a predominant role in enhancing of intestinal barrier function of broiler chickens. 黄芪多糖诱导的肠道微生物群在增强肉鸡肠道屏障功能方面发挥着主导作用。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-06 DOI: 10.1186/s40104-024-01060-1
Jiantao Yang, Yanpeng Sun, Qianggang Wang, Shanglin Yu, Yanhe Li, Bin Yao, Xiaojun Yang
{"title":"Astragalus polysaccharides-induced gut microbiota play a predominant role in enhancing of intestinal barrier function of broiler chickens.","authors":"Jiantao Yang, Yanpeng Sun, Qianggang Wang, Shanglin Yu, Yanhe Li, Bin Yao, Xiaojun Yang","doi":"10.1186/s40104-024-01060-1","DOIUrl":"10.1186/s40104-024-01060-1","url":null,"abstract":"<p><strong>Background: </strong>The intestinal barrier is the first line of defense against intestinal invasion by pathogens and foreign antigens and is closely associated with the gut microbiota. Astragalus polysaccharides (APS) have a long history of use in traditional Chinese medicine owing to its protective properties against intestinal barrier function. The mechanism of APS-induced gut microbiota enhancing intestinal barrier function is urgently needed.</p><p><strong>Results: </strong>Dietary polysaccharide deprivation induced intestinal barrier dysfunction, decreased growth performance, altered microbial composition (Faecalibacterium, Dorea, and Coprobacillus), and reduced isobutyrate concentration. The results showed that APS facilitates intestinal barrier function in broiler chickens, including a thicker mucus layer, reduced crypt depth, and the growth of tight junction proteins. We studied the landscape of APS-induced gut microbiota and found that APS selectively promoted the growth of Parabacteroides, a commensal bacterium that plays a predominant role in enhancing intestinal barrier function. An in vitro growth assay further verified that APS selectively increased the abundance of Parabacteroides distasonis and Bacteroides uniformis. Dietary APS supplementation increased the concentrations of isobutyrate and bile acid (mainly chenodeoxycholic acid and deoxycholate acid) and activated signaling pathways related to intestinal barrier function (such as protein processing in the endoplasmic reticulum, tight junctions, and adherens junction signaling pathways).</p><p><strong>Conclusions: </strong>APS intervention restored the dietary polysaccharide-induced dysfunction of the intestinal barrier by selectively promoting the abundance of Parabacteroides distasonis, and increasing the concentrations of isobutyrate and bile acids (mainly CDCA and DCA). These findings suggest that APS-induced gut microbiota and metabolic niches are promising strategies for enhancing intestinal barrier function.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CAMKK2-AMPK axis endows dietary calcium and phosphorus levels with regulatory effects on lipid metabolism in weaned piglets. CAMKK2-AMPK 轴赋予日粮钙磷水平对断奶仔猪脂质代谢的调节作用。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-05 DOI: 10.1186/s40104-024-01061-0
Zhenyan Miao, Yanjie Sun, Zhangjian Feng, Qiwen Wu, Xuefen Yang, Li Wang, Zongyong Jiang, Ying Li, Hongbo Yi
{"title":"CAMKK2-AMPK axis endows dietary calcium and phosphorus levels with regulatory effects on lipid metabolism in weaned piglets.","authors":"Zhenyan Miao, Yanjie Sun, Zhangjian Feng, Qiwen Wu, Xuefen Yang, Li Wang, Zongyong Jiang, Ying Li, Hongbo Yi","doi":"10.1186/s40104-024-01061-0","DOIUrl":"10.1186/s40104-024-01061-0","url":null,"abstract":"<p><strong>Background: </strong>In the realm of swine production, optimizing body composition and reducing excessive fat accumulation is critical for enhancing both economic efficiency and meat quality. Despite the acknowledged impact of dietary calcium (Ca) and phosphorus (P) on lipid metabolism, the precise mechanisms behind their synergistic effects on fat metabolism remain elusive.</p><p><strong>Results: </strong>Research observations have shown a decreasing trend in the percentage of crude fat in carcasses with increased calcium and phosphorus content in feed. Concurrently, serum glucose concentrations significantly decreased, though differences in other lipid metabolism-related indicators were not significant across groups. Under conditions of low calcium and phosphorus, there is a significant suppression in the expression of FABPs, CD36 and PPARγ in the jejunum and ileum, leading to inhibited intestinal lipid absorption. Concurrently, this results in a marked increase in lipid accumulation in the liver. Conversely, higher levels of dietary calcium and phosphorus promoted intestinal lipid absorption and reduced liver lipid accumulation, with these changes being facilitated through the activation of the CAMKK2/AMPK signaling pathway by high-calcium-phosphorus diets. Additionally, the levels of calcium and phosphorus in the diet significantly altered the composition of liver lipids and the gut microbiota, increasing α-diversity and affecting the abundance of specific bacterial families related to lipid metabolism.</p><p><strong>Conclusion: </strong>The evidence we provide indicates that the levels of calcium and phosphorus in the diet alter body fat content and lipid metabolism by modulating the response of the gut-liver axis to lipids. These effects are closely associated with the activation of the CAMKK2/AMPK signaling pathway.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipolysis pathways modulate lipid mediator release and endocannabinoid system signaling in dairy cows' adipocytes. 脂肪分解途径可调节奶牛脂肪细胞中脂质介质的释放和内源性大麻素系统信号的传递。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-03 DOI: 10.1186/s40104-024-01062-z
Madison N Myers, Miguel Chirivi, Jeff C Gandy, Joseph Tam, Maya Zachut, G Andres Contreras
{"title":"Lipolysis pathways modulate lipid mediator release and endocannabinoid system signaling in dairy cows' adipocytes.","authors":"Madison N Myers, Miguel Chirivi, Jeff C Gandy, Joseph Tam, Maya Zachut, G Andres Contreras","doi":"10.1186/s40104-024-01062-z","DOIUrl":"10.1186/s40104-024-01062-z","url":null,"abstract":"<p><strong>Background: </strong>As cows transition from pregnancy to lactation, free fatty acids (FFA) are mobilized from adipose tissues (AT) through lipolysis to counter energy deficits. In clinically healthy cows, lipolysis intensity is reduced throughout lactation; however, if FFA release exceeds tissue demands or the liver's metabolic capacity, lipid byproducts accumulate, increasing cows' risk of metabolic and infectious disease. Endocannabinoids (eCBs) and their congeners, N-acylethanolamines (NAEs), are lipid-based compounds that modulate metabolism and inflammation. Their synthesis and release depend upon the availability of FFA precursors and the abundance of synthesizing and degrading enzymes and transporters. Therefore, we hypothesized that eCB production and transcription of endocannabinoid system components are modulated by lipolysis pathways in adipocytes. To test this hypothesis, we stimulated canonical (isoproterenol, 1 µmol/L; ISO) and inflammatory (lipopolysaccharide, 1 µg/mL; LPS) lipolysis pathways in adipocytes isolated from the AT of 5 Holstein dairy cows. Following, we assessed lipolysis intensity, adipocytes' release of eCBs, and transcription of endocannabinoid system components.</p><p><strong>Results: </strong>We found that ISO and LPS stimulated lipolysis at comparable intensities. Exposure to either treatment tended to elevate the release of eCBs and NAEs by cultured adipocytes; however, specific eCBs and NAEs and the transcriptional profiles differed by treatment. On one hand, ISO enhanced adipocytes' release of 2-arachidonoylglycerol (2-AG) but reduced NAE production. Notably, ISO enhanced the cells' expression of enzymes associated with 2-AG biosynthesis (INPP5F, GDPD5, GPAT4), transport (CD36), and adipogenesis (PPARG). Conversely, LPS enhanced adipocytes' synthesis and release of N-arachidonoylethanolamide (AEA). This change coincided with enhanced transcription of the NAE-biosynthesizing enzyme, PTPN22, and adipocytes' transcription of genes related to eCB degradation (PTGS2, MGLL, CYP27B1). Furthermore, LPS enhanced adipocytes' transcription of eCB and NAE transporters (HSPA1A, SCP2) and the expression of the anti-adipogenic ion channel, TRPV3.</p><p><strong>Conclusions: </strong>Our data provide evidence for distinct modulatory roles of canonical and inflammatory lipolysis pathways over eCB release and transcriptional regulation of biosynthesis, degradation, transport, and ECS signaling in cows' adipocytes. Based on our findings, we conclude that, within adipocytes, eCB production and ECS component expression are, at least in part, mediated by lipolysis in a pathway-dependent manner. These findings contribute to a deeper understanding of the molecular mechanisms underlying metabolic regulation in dairy cows' AT, with potential implications for prevention and treatment of inflammatory and metabolic disorders.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in single-cell transcriptomics in animal research. 动物研究中单细胞转录组学的进展。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-02 DOI: 10.1186/s40104-024-01063-y
Yunan Yan, Senlin Zhu, Minghui Jia, Xinyi Chen, Wenlingli Qi, Fengfei Gu, Teresa G Valencak, Jian-Xin Liu, Hui-Zeng Sun
{"title":"Advances in single-cell transcriptomics in animal research.","authors":"Yunan Yan, Senlin Zhu, Minghui Jia, Xinyi Chen, Wenlingli Qi, Fengfei Gu, Teresa G Valencak, Jian-Xin Liu, Hui-Zeng Sun","doi":"10.1186/s40104-024-01063-y","DOIUrl":"10.1186/s40104-024-01063-y","url":null,"abstract":"<p><p>Understanding biological mechanisms is fundamental for improving animal production and health to meet the growing demand for high-quality protein. As an emerging biotechnology, single-cell transcriptomics has been gradually applied in diverse aspects of animal research, offering an effective method to study the gene expression of high-throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identified cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions in animals using single-cell transcriptomics. In this paper, we introduce the development of single-cell technology and review the processes, advancements, and applications of single-cell transcriptomics in animal research. We summarize recent efforts using single-cell transcriptomics to obtain a more profound understanding of animal nutrition and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the practical experience accumulated based on a large number of cases is highlighted to provide a reference for determining key factors (e.g., sample size, cell clustering, and cell type annotation) in single-cell transcriptomics analysis. We also discuss the limitations and outlook of single-cell transcriptomics in the current stage. This paper describes the comprehensive progress of single-cell transcriptomics in animal research, offering novel insights and sustainable advancements in agricultural productivity and animal health.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Postbiotics from Saccharomyces cerevisiae fermentation stabilize microbiota in rumen liquid digesta during grain-based subacute ruminal acidosis (SARA) in lactating dairy cows. 在泌乳奶牛发生以谷物为基础的亚急性瘤胃酸中毒(SARA)期间,酵母菌发酵产生的后益生菌可稳定瘤胃液体消化液中的微生物群。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-08-01 DOI: 10.1186/s40104-024-01056-x
Junfei Guo, Zhengxiao Zhang, Le Luo Guan, Ilkyu Yoon, Jan C Plaizier, Ehsan Khafipour
{"title":"Postbiotics from Saccharomyces cerevisiae fermentation stabilize microbiota in rumen liquid digesta during grain-based subacute ruminal acidosis (SARA) in lactating dairy cows.","authors":"Junfei Guo, Zhengxiao Zhang, Le Luo Guan, Ilkyu Yoon, Jan C Plaizier, Ehsan Khafipour","doi":"10.1186/s40104-024-01056-x","DOIUrl":"10.1186/s40104-024-01056-x","url":null,"abstract":"<p><strong>Background: </strong>Subacute ruminal acidosis (SARA) is a common metabolic disorder of high yielding dairy cows, and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation. This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products (SCFP) on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges. A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition. Treatment groups included a Control diet or diets supplemented with postbiotics (SCFPa, 14 g/d Original XPC; SCFPb-1X, 19 g/d NutriTek; SCFPb-2X, 38 g/d NutriTek, Diamond V, Cedar Rapids, IA, USA). Grain-based SARA challenges were conducted during week 5 (SARA1) and week 8 (SARA2) after parturition by replacing 20% DM of the base total mixed ration (TMR) with pellets containing 50% ground barley and 50% ground wheat. Total DNA from rumen liquid samples was subjected to V3-V4 16S rRNA gene amplicon sequencing. Characteristics of rumen microbiota were compared among treatments and SARA stages.</p><p><strong>Results: </strong>Both SARA challenges reduced the diversity and richness of rumen liquid microbiota, altered the overall composition (β-diversity), and its predicted functionality including carbohydrates and amino acids metabolic pathways. The SARA challenges also reduced the number of significant associations among different taxa, number of hub taxa and their composition in the microbial co-occurrence networks. Supplementation with SCFP postbiotics, in particular SCFPb-2X, enhanced the robustness of the rumen microbiota. The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges. The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria, including members of Ruminococcaceae and Lachnospiraceae, and also increased the numbers of hub taxa during non-SARA and SARA stages. Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration, and α- and β-diversity metrics in rumen liquid digesta.</p><p><strong>Conclusions: </strong>Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows. Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary silymarin improves performance by altering hepatic lipid metabolism and cecal microbiota function and its metabolites in late laying hens. 膳食水飞蓟素通过改变后期蛋鸡的肝脏脂质代谢和盲肠微生物群功能及其代谢产物来提高其生产性能。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-07-13 DOI: 10.1186/s40104-024-01057-w
Yanghao Guo, Yudong Xu, Derun Wang, Shihao Yang, Zehe Song, Rui Li, Xi He
{"title":"Dietary silymarin improves performance by altering hepatic lipid metabolism and cecal microbiota function and its metabolites in late laying hens.","authors":"Yanghao Guo, Yudong Xu, Derun Wang, Shihao Yang, Zehe Song, Rui Li, Xi He","doi":"10.1186/s40104-024-01057-w","DOIUrl":"10.1186/s40104-024-01057-w","url":null,"abstract":"<p><strong>Background: </strong>Liver lipid dysregulation is one of the major factors in the decline of production performance in late-stage laying hens. Silymarin (SIL), a natural flavonolignan extracted from milk thistle, is known for its hepatoprotective and lipid-lowering properties in humans. This study evaluates whether SIL can provide similar benefits to late-stage laying hens. A total of 480 68-week-old Lohmann Pink laying hens were randomly assigned into 5 groups, each group consisting of 6 replicates with 16 hens each. The birds received a basal diet either without silymarin (control) or supplemented with silymarin at concentrations of 250, 500, 750, or 1,000 mg/kg (SIL250, SIL500, SIL750, SIL1000) over a 12-week period.</p><p><strong>Results: </strong>The CON group exhibited a significant decline in laying rates from weeks 9 to 12 compared to the initial 4 weeks (P = 0.042), while SIL supplementation maintained consistent laying rates throughout the study (P > 0.05). Notably, the SIL500 and SIL750 groups showed higher average egg weight than the CON group during weeks 5 to 8 (P = 0.049). The SIL750 group had a significantly higher average daily feed intake across the study period (P < 0.05), and the SIL500 group saw a marked decrease in the feed-to-egg ratio from weeks 5 to 8 (P = 0.003). Furthermore, the SIL500 group demonstrated significant reductions in serum ALT and AST levels (P < 0.05) and a significant decrease in serum triglycerides and total cholesterol at week 12 with increasing doses of SIL (P < 0.05). SIL also positively influenced liver enzyme expression (FASN, ACC, Apo-VLDL II, FXR, and CYP7A1; P < 0.05) and altered the cecal microbiota composition, enhancing species linked to secondary bile acid synthesis. Targeted metabolomics identified 9 metabolites predominantly involved in thiamin metabolism that were significantly different in the SIL groups (P < 0.05).</p><p><strong>Conclusions: </strong>Our study demonstrated that dietary SIL supplementation could ameliorate egg production rate in late stage laying hens, mechanistically, this effect was via improving hepatic lipid metabolism and cecal microbiota function to achieve. Revealed the potentially of SIL as a feed supplementation to regulate hepatic lipid metabolism dysregulation. Overall, dietary 500 mg/kg SIL had the best effects.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysine 2-hydroxyisobutyrylation levels determined adipogenesis and fat accumulation in adipose tissue in pigs. 赖氨酸 2-羟基异丁酰化水平决定了猪脂肪组织中的脂肪生成和脂肪积累。
IF 6.3
Journal of Animal Science and Biotechnology Pub Date : 2024-07-12 DOI: 10.1186/s40104-024-01058-9
Enfa Yan, Mingyang Tan, Ning Jiao, Linjuan He, Boyang Wan, Xin Zhang, Jingdong Yin
{"title":"Lysine 2-hydroxyisobutyrylation levels determined adipogenesis and fat accumulation in adipose tissue in pigs.","authors":"Enfa Yan, Mingyang Tan, Ning Jiao, Linjuan He, Boyang Wan, Xin Zhang, Jingdong Yin","doi":"10.1186/s40104-024-01058-9","DOIUrl":"10.1186/s40104-024-01058-9","url":null,"abstract":"<p><strong>Background: </strong>Excessive backfat deposition lowering carcass grade is a major concern in the pig industry, especially in most breeds of obese type pigs. The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear. Lysine 2-hydroxyisobutyrylation (Khib), is a novel protein post-translational modification (PTM), which play an important role in transcription, energy metabolism and metastasis of cancer cells, but its role in adipogenesis and fat accumulation has not been shown.</p><p><strong>Results: </strong>In this study, we first analyzed the modification levels of acetylation (Kac), Khib, crotonylation (Kcr) and succinylation (Ksu) of fibro-adipogenic progenitors (FAPs), myogenic precursors (Myo) and mesenchymal stem cells (MSCs) with varied differentiation potential, and found that only Khib modification in FAPs was significantly higher than that in MSCs. Consistently, in parallel with its regulatory enzymes lysine acetyltransferase 5 (KAT5) and histone deacetylase 2 (HDAC2) protein levels, the Khib levels increased quadratically (P < 0.01) during adipogenic differentiation of FAPs. KAT5 knockdown in FAPs inhibited adipogenic differentiation, while HDAC2 knockdown enhanced adipogenic differentiation. We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs (Laiwu pigs) and lean-type pigs (Duroc pigs), respectively. Accordingly, the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese- and lean-type pigs.</p><p><strong>Conclusions: </strong>From the perspective of protein translational modification, we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs, and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信