T. Ussmueller, D. Brenk, J. Essel, J. Heidrich, G. Fischer, R. Weigel
{"title":"Remote powered medical implants","authors":"T. Ussmueller, D. Brenk, J. Essel, J. Heidrich, G. Fischer, R. Weigel","doi":"10.1109/IMWS-BIO.2013.6756186","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756186","url":null,"abstract":"Healthcare of the future will rely on lots of sensor devices especially long term monitoring sensors. In order to gain acceptance by the patients these devices have to be completely imperceptible and maintenance free. A solution to these requirements is a remote powered implantable sensor system. One of the biggest challenges of such systems is the power supply. Ideal sensor systems do not require any kind of battery for reliable operation. Instead they harvest the energy from the electromagnetic field of the interrogating device. In this talk a possible solution to this problem will be presented. The sensor system is based on an integrated circuit, which consists of a backscattering transceiver and an ultra-low-power analog-to-digital converter (ADC) for sensor data acquisition. With its power consumption of less than 10 μν incl. the ADC, it is possible to harvest the energy from the electromagnetic field and supply the complete ASIC.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"70 5 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77635866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BAN Over-the-Air testing using an arm-swinging dynamic phantom","authors":"K. Ogawa, Kun Li, K. Honda","doi":"10.1109/IMWS-BIO.2013.6756193","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756193","url":null,"abstract":"This paper presents a new methodology of an Over-the-Air (OTA) testing using an arm-swinging dynamic phantom applied to wireless Body Area Network (BAN) systems. The phantom has unique features, in that swinging of the right and left arms and the direction and speed of swing can be controlled independently, leading to excellent capability for replicating the variety of natural walking and running styles seen in the average human. Using the phantom, we have developed a spatial fading emulator to make the performance assessment of a BAN radio module. In this paper, the configuration of the developed fading emulator with a dynamic phantom used for BAN-OTA Testing is shown. We also present on-body multipath characterization of BAN radios. Particular emphasis is placed on the evaluation of K-factor in indoor environments. It is revealed that the K-factor changes mainly due to the variations in the direct wave between two antennas caused by the shadowing effects of the human body.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"118 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80238333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data rate enhancement method for body channel frequency selective digital transmission scheme","authors":"C. Ho, Xin Liu, M. Je","doi":"10.1109/IMWS-BIO.2013.6756255","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756255","url":null,"abstract":"Human body communication (HBC) is an emerging communication technique for wireless body area networks, which has recently been included in IEEE802.15.6 standard. The HBC transmitter uses the frequency selective digital transmission (FSDT) scheme, where Walsh code are used to spread the information bits. The data rate of this system is limited to 1.3125 Mbps, due to the limited set of spreading codes available for use under the transmission mask of IEEE802.15.6. In this paper, we present a code stacking method that effectively doubles the data rate using the same set of Walsh code. The performance of the proposed amplitude modulated FSDT scheme depends on the effectiveness of the system to reduce the effect of inter-symbol interference (ISI). Two methods for minimizing the effect of ISI are presented in this paper. Comparing to the FSDT scheme, doubling the data rate resulted in signal to noise ratio degradation of 1 dB.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"11 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74763535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combining microwave imaging and diffusion optical tomography for breast tumor detection","authors":"K. Agarwal, Xudong Chen","doi":"10.1109/IMWS-BIO.2013.6756258","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756258","url":null,"abstract":"Incomplete measurement aperture, presence of large fatty tissues, huge number of unknowns, etc., make reconstruction of the breast tumors very difficult using a single technique. This paper shows breast tumor detection method that complements the contemporary diffusion optical tomography technique with microwave imaging technique to robustly reconstruct multiple breast tumors in the presence of several fatty tissues.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"8 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73163304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Slobozhanyuk, I. Melchakova, A. Kozachenko, C. Simovski, P. Belov
{"title":"Manipulation the near field with wire metamaterials","authors":"A. Slobozhanyuk, I. Melchakova, A. Kozachenko, C. Simovski, P. Belov","doi":"10.1109/IMWS-BIO.2013.6756147","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756147","url":null,"abstract":"Metamaterials have been proved very useful for their high potential in guiding and manipulating of near fields. A theoretically revealed effect of the significant enhancement of evanescent harmonics inside a wire metamaterial slab is experimentally verified in the microwave frequency range. The phenomenon originates from resonant pumping of standing waves into which evanescent waves are converted inside the slab. We find a good agreement between experimental data, numerical simulations and theory. Also some metamaterials applications for magnetic resonance imaging system are viewed.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"13 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73248731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supervision and control of medical sterilization processes utilizing the Multipole Resonance Probe","authors":"C. Schulz, T. Styrnoll, P. Awakowicz, I. Rolfes","doi":"10.1109/IMWS-BIO.2013.6756158","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756158","url":null,"abstract":"An innovative and sensitive plasma probe suitable for the supervision and control of low-temperature plasma sterilization processes is presented in this contribution. For heat or chemical sensitive materials, plasmas are an indispensable tool regarding the sterilization of surgery instruments, for example. The presented Multipole Resonance Probe (MRP) allows for the simultaneous determination of plasma density, plasma temperature, and collision frequency by a simple and fast evaluation of its frequency response. Fed by an rf-signal, the MRP yields sensitive and local measurements for the determination of lowest fluctuations and for the application of a sensor network, respectively. With a minimal distance of 3 cm between two probes, the MRP can be deployed effectively as sensor network inside the plasma for the supervision of its stability and homogeneity. Based on 3D-electromagnetic field simulations the advantages of the MRP are discussed in detail. Compared to a Langmuir probe, measurements in a Double Inductive Coupled Plasma (DICP) show the suitability of the MRP inside an argon plasma.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"9 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81209265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linearized asymmetrical GaN Doherty power amplifier with 100 MHz instantaneous bandwidth at 3.5GHz","authors":"J. Xia, Mengsu Yang, Xiaowei Zhu","doi":"10.1109/IMWS-BIO.2013.6756219","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756219","url":null,"abstract":"This paper presents a linearized Doherty power amplifier (PA) operating over 100 MHz instantaneous bandwidth at 3.5 GHz. To maintain high efficiency at large back-off output power and achieve improved load modulation, the Doherty PA is designed by using unequal sized GaN devices. An uneven power divider is also utilized to deliver more input power to the peaking amplifier. Experimental results show that, for a 100 MHz modulated signal, the Doherty PA can achieve the efficiency of 42% at about 9 dB back-off output power of 39.5 dBm. The adjacent channel leakage ratio is about -25 dBc and can be improved to about -47 dBc by using digital pre-distortion technique.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"29 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81149499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of the directional horn-shaped planar antenna used for wireless mouse online test","authors":"Yaping Wang, Xueguan Liu, Huiping Guo, Xinmi Yang","doi":"10.1109/IMWS-BIO.2013.6756201","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756201","url":null,"abstract":"In mass production, the RF performance of wireless devices must be tested online. The directional capability of the antenna can be used to reduce the mutual interference between the testing systems. This paper designed a planar antenna for the above application. The planar horn-shaped structure is applied on the antenna to realize directional radiation and a ridge type slow-wave structure is introduced to reduce the antenna size. Simulation and measuring results meet well. The antenna has the advantages of good directivity, easy fabrication and low cost. So it has the potential to be applied to wireless device online test.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"274 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76798326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast fill-in of impedance matrix in the accurate subentire domain basis function method for large-scale planar periodic structures","authors":"P. Du, S. Xiao","doi":"10.1109/IMWS-BIO.2013.6756224","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756224","url":null,"abstract":"A fast fill-in technique of impedance matrix in the accurate subentire domain basis function method for analyzing large-scale planar periodic structures is presented. By using the proposed technique, the generation time can be reduced from O(N2c) to O(Nc), where Nc is the number of unit cells in the total periodic structure. To validate the accuracy and efficiency of the proposed method, several numerical examples are given.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"81 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76845301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective material parameter calculation for layered metamaterial structures and its application in antenna design","authors":"Dongying Li, E. Li","doi":"10.1109/IMWS-BIO.2013.6756261","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756261","url":null,"abstract":"This paper summarizes the development of an efficient material parameter extraction algorithm for sub-wavelength structures. The method can be used to extract the effective material parameters of layered structures stacked between media with either identical or different material properties. The application of the proposed algorithm in metamaterials is discussed, and examples are given using the optimized metamaterials in novel antenna structure design.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"18 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75653436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}