Manipulation the near field with wire metamaterials

A. Slobozhanyuk, I. Melchakova, A. Kozachenko, C. Simovski, P. Belov
{"title":"Manipulation the near field with wire metamaterials","authors":"A. Slobozhanyuk, I. Melchakova, A. Kozachenko, C. Simovski, P. Belov","doi":"10.1109/IMWS-BIO.2013.6756147","DOIUrl":null,"url":null,"abstract":"Metamaterials have been proved very useful for their high potential in guiding and manipulating of near fields. A theoretically revealed effect of the significant enhancement of evanescent harmonics inside a wire metamaterial slab is experimentally verified in the microwave frequency range. The phenomenon originates from resonant pumping of standing waves into which evanescent waves are converted inside the slab. We find a good agreement between experimental data, numerical simulations and theory. Also some metamaterials applications for magnetic resonance imaging system are viewed.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metamaterials have been proved very useful for their high potential in guiding and manipulating of near fields. A theoretically revealed effect of the significant enhancement of evanescent harmonics inside a wire metamaterial slab is experimentally verified in the microwave frequency range. The phenomenon originates from resonant pumping of standing waves into which evanescent waves are converted inside the slab. We find a good agreement between experimental data, numerical simulations and theory. Also some metamaterials applications for magnetic resonance imaging system are viewed.
用导线超材料操纵近场
超材料在近场导引和操纵方面的巨大潜力已被证明是非常有用的。在微波频率范围内,通过实验验证了理论揭示的金属丝超材料板内倏逝谐波的显著增强效应。这种现象源于驻波的共振泵送,而驻波在板内被转换成倏逝波。我们发现实验数据、数值模拟和理论吻合得很好。并展望了一些超材料在磁共振成像系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信