核科学与技术国际期刊(英文)Pub Date : 2020-02-14DOI: 10.4236/wjnst.2020.102007
G. Toshinsky, A. Dedul, O. Komlev, A. Kondaurov, V. Petrochenko
{"title":"Lead-Bismuth and Lead as Coolants for Fast Reactors","authors":"G. Toshinsky, A. Dedul, O. Komlev, A. Kondaurov, V. Petrochenko","doi":"10.4236/wjnst.2020.102007","DOIUrl":"https://doi.org/10.4236/wjnst.2020.102007","url":null,"abstract":"Fast reactors used lead-bismuth eutectic (LBE) and lead as coolants possess very high level of inherent self-protection and passive safety against severe accident. So, population radiophobia can be overcome. That type of reactors can be simultaneously more safely and more cheaply. As all other coolants, LBE and lead coolant (LC) possess the certain virtues and shortcomings. The presented report includes the comparative analysis of characteristic properties of those coolants, their impact on reactor safety, reliability and operating characteristics. The conclusion is made about promising usage of FRs with these coolants in future NP after the experience in operating of the prototypes of such reactors has been obtained.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44266820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2020-01-01DOI: 10.4236/wjnst.2020.101002
M. Dides, José Hernández, L. Olivares
{"title":"Design and Analysis of a Metallic Uranium Reactor Type-Pump Using the Magnesiothermy Process","authors":"M. Dides, José Hernández, L. Olivares","doi":"10.4236/wjnst.2020.101002","DOIUrl":"https://doi.org/10.4236/wjnst.2020.101002","url":null,"abstract":"This paper shows a methodology to obtain metallic uranium through a magnesiothermy process. Chile has two experimental reactors operated by the “Chilean Nuclear Energy Commission” (CCHEN). One is 5 MW and the other is 10 MW. In order to fulfill international agreements about nuclear energy for testing purposes of these reactors, CChEN purchased 19.9% enriched uranium hexafluoride, also known as the limit of Low Enriched Uranium (LEU). Due to the capacity of these reactors, they need high-density uranium compounds for their fuel, in order to work with LEU. For this reason, the uranium needs a previous conversion into metallic uranium. The conversion laboratory carried out experiences for reduction of UF4 with Mg. The main purpose of this study was to analyze the operating conditions under which the reduction reaction takes place, the designed method and the equipment and materials used. The raw material used was dehydrated UF4, prepared by electrolytic reduction and commercial purity Magnesium. The reaction took place in a cylindrical reactor made of low alloy steel, with a conic section in the lower part. The internal zone was coated with a 2.5 cm thick layer of CaF2. The process started by applying external heating, according to a heating program, developed specially for this purpose. The reduction reaction took place starting at 650°C. The result was a cylinder of uranium metal and MgF2 slag. The crossed cut uranium cylinder showed a smooth and homogeneous surface without inclusions of slag, pores or blisters. The yield of the reaction was of the order of 75% with respect to the expected theoretical value. The uranium cone obtained fulfilled the required conditions for source material for nuclear fuel fabrication, with a uranium content of 97.5%.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2020-01-01DOI: 10.4236/wjnst.2020.101003
Shihao Chen, Ziwei Chen
{"title":"A Possible Way to Realize Controlled Nuclear Fusion at Low Temperatures","authors":"Shihao Chen, Ziwei Chen","doi":"10.4236/wjnst.2020.101003","DOIUrl":"https://doi.org/10.4236/wjnst.2020.101003","url":null,"abstract":"This paper presents a new way to realize controlled nuclear fusion. The way is that a single energy neutron beam fuses with given nuclei, such as lithium nuclei or boron nuclei, so that the nuclear energy is released. The sort of fusion can be achieved at low temperatures, because a neutron has no charge and has a large reaction cross section with a nucleus. The fusion is easy to control and does not produce radioactive spent nuclear fuel. One of the five sorts of neutron sources is the electron neutron source in which a single energy electron beam collides with a single energy bare nucleus beam, such as the deuteron, to produce a single energy neutron. These neutrons irradiate target nuclei and are absorbed by the target nuclei, so that nuclear energy is released. Compared with conventional fusion, it has the disadvantage of releasing less energy and energy density. In addition, it takes a certain amount of energy to produce a beam of single-energy neutrons. However, if some of the input energy can be effectively recycled, the fusion process must produce more energy than the input energy.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2020-01-01DOI: 10.4236/wjnst.2020.101006
A. Biswas, Md. Shivly Mahmood
{"title":"Feasibility of “Rooppur Nuclear Power Plant” & Its Contribution to the Future Energy Sector","authors":"A. Biswas, Md. Shivly Mahmood","doi":"10.4236/wjnst.2020.101006","DOIUrl":"https://doi.org/10.4236/wjnst.2020.101006","url":null,"abstract":"Digital Bangladesh is one of the most challenging decisions made by the government to transform the country to be a middle-income country by 2021. That’s why the government implemented a large number of projects relating to digital technology. Rooppur Nuclear Power Plant (RNPP) project is one of them. In the recent past, the country faced an enormous electricity shortage with a great energy gap between peak demand and maximum energy generation. In Bangladesh, the present government promised to ensure the electricity to all the citizens by 2021. That’s why the world’s most lucrative Nuclear advanced technology is going on under Power Sector Master Plan (PSMP)-2016 (Vision 2041). In order to improve the security system of nuclear power, the bilateral project is not fully transparent for the public, which is understandable. That makes some political conflict with the anti-nuclear agenda. As a result, the general concerns are also involving in this project. Safety and Security systems by the world’s most advanced Water-Water Energy Reactor (VVER-1200) is in full discussion by this paper in order to get rid of local concerns. Countries Power Profile is completely described and focuses on the current National Planning to overcome the power shortage through the use of Nuclear Power. This paper mainly discusses the feasibility of RNPP in Bangladesh and how it will play a major role in the national energy sector in future to become the “DREAM COME TRUE” project for Bangladesh.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70890048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2020-01-01DOI: 10.4236/wjnst.2020.101001
R. Arceo, O. Pedraza, L. M. Sandoval, L. A. López, C. Alvarez, F. Hueyotl-Zahuantitla, A. Flores-Rosas, G. Raya, J. Martínez-Castro
{"title":"Elastic Cross Sections for 3He + 58Ni above the Coulomb Barrier","authors":"R. Arceo, O. Pedraza, L. M. Sandoval, L. A. López, C. Alvarez, F. Hueyotl-Zahuantitla, A. Flores-Rosas, G. Raya, J. Martínez-Castro","doi":"10.4236/wjnst.2020.101001","DOIUrl":"https://doi.org/10.4236/wjnst.2020.101001","url":null,"abstract":"In this work, the elastic cross section is calculated at energies above the Coulomb barrier for 3He + 58Ni using a Woods-Saxon potential. The solutions of the radial Schrodinger equations are calculated numerically and they are introduced in the S matrix, after which the cross section is obtained. The parameters in the potential are adjusted to satisfy known experimental data.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2020-01-01DOI: 10.4236/wjnst.2020.101004
K. Fernández, J. Navarrete, M. A. Zúñiga, Ernesto Hernández
{"title":"Isobars Separation (137Cs-137mBa-137Ba) from Marine Sediments, in Order to Evaluate Directly Their Radioactive Contamination by Mass Spectrometry","authors":"K. Fernández, J. Navarrete, M. A. Zúñiga, Ernesto Hernández","doi":"10.4236/wjnst.2020.101004","DOIUrl":"https://doi.org/10.4236/wjnst.2020.101004","url":null,"abstract":"Marine sediments contamination by fission product 137Cs-137mBa is a fact since the period 1945-65, when plus than two thousand atomic explosion tests were performed mainly in the southern seas, earth region with minor population density. However, marine flows have produced dissemination of this radioactive pair through the sea bottom all over the world, at different levels, because the sea movement and natural decaying of radioactive pair: parent 137Cs (t1/2 = 30.17 years) and daughter 137mBa (t1/2 = 2.55 minutes). Radioactive detection of these contaminants, compared as percentage with that of natural 40K (t1/2 = 1.28 × 109 years, 0.0118% of elementary K) leads to radiation contamination factor (RCF), as one possible unit to measure the radioactive contamination intensity in different regions, as well to determine if there is some other possible source of this contaminant, for example water cooling from power nuclear reactors when it is discharged at sea. However, radioactive detection always implies an unavoidable statistical variation, which makes more difficult to appreciate the changes as function of time and region. But at beginning of this century, mass spectrometry has got impressive advances, which makes it much more precise and sensible than radioactive detection [1]. This paper attempts to measure with other units the radioactive contamination: 137Cs atoms number per gram of sample, instead radioactivity, which could be more direct and with minor standard deviation that radioactive detection, solving at same time the isobars separation: 137Cs versus 137mBa plus elementary 137Ba (11.23% of Ba element).","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2019-09-11DOI: 10.4236/wjnst.2019.94012
Omer Kouakou, G. A. Monnehan, Gogon B. D. L. Huberson
{"title":"Evaluation of Dosimetric Performance and Global Uncertainty of the Harshaw 6600 Plus System Used to Staff Monitoring in Côte d’Ivoire","authors":"Omer Kouakou, G. A. Monnehan, Gogon B. D. L. Huberson","doi":"10.4236/wjnst.2019.94012","DOIUrl":"https://doi.org/10.4236/wjnst.2019.94012","url":null,"abstract":"The objective of this work is to check the dosimetric performances of the TLD-100 as stated by the manufacturer as well as the technical standards of radiation protection. The purpose of the performance audit is to assess the inhomogeneity of TLD sensitivity, repeatability and reproducibility, linearity, energy dependence, angular dependence, and fading. All tests were performed under the conditions of ambient temperature and relative humidity recommended by the manufacturer. We began the study by calibrating the Harshaw 6600 Plus, and checking its performance. The TLD-100 performance verification results were all acceptable and in accordance with the manufacturer’s advertised values and the radiation protection technical standards. However the performance of the TLD-100 that we have evaluated may have some limitations; these limits, which are sources of uncertainty, have been taken into account in this work by evaluating the overall uncertainty of the Hp (10) dose in the uncertainty range 9.45% to 15.80% by simple formulas. The TLD-100 personal dosimeters and the 6600 Plus reader system indicate that the calculated values of the overall uncertainty Hp (10) are well below the allowable values of 21% to 42% suggested for personal dosimetry services. The obtained data encourage the use of the system for the routine evaluation of the external exposure of workers under ionizing radiation in our laboratory.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44325015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2019-09-06DOI: 10.4236/wjnst.2019.94013
Xenofontos Thalia, P. Savva, M. Varvayanni, J. Maillard, J. Silva, M. Jaekel, N. Catsaros
{"title":"Qualification of the ANET Code for Spallation Neutron Yield and Core Criticality in the KUCA ADS","authors":"Xenofontos Thalia, P. Savva, M. Varvayanni, J. Maillard, J. Silva, M. Jaekel, N. Catsaros","doi":"10.4236/wjnst.2019.94013","DOIUrl":"https://doi.org/10.4236/wjnst.2019.94013","url":null,"abstract":"Innovative nuclear reactor concepts such as the Accelerator Driven Systems (ADSs) have imposed extra requirements of simulation capabilities on the existing stochastic neutronics codes. The combination of an accelerator and a nuclear reactor in the ADS requires the simulation of both subsystems for an integrated system analysis. Therefore, a need arises for more advanced simulation tools, able to cover the broad neutron energy spectrum involved in these systems. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic code for simulating conventional and hybrid nuclear reactors. Successive testing applications performed throughout the ANET development have been utilized to verify and validate the new code capabilities. In this context, the ANET reliability in simulating the spallation reaction and the corresponding neutron yield as well as computing the multiplication factor of an operating ADS are here examined. More specifically, three cores of the Kyoto University Critical Assembly (KUCA) facility in Japan were analyzed focusing on the spallation neutron yield and the neutron multiplication factor. The ANET-produced results are compared with independent results obtained using the stochastic codes MCNP6.1 and MCNPX. Satisfactory agreement is found between the codes, confirming thus ANET’s capability to successfully estimate both the neutron yield of the spallation reaction and the keff of a realistic ADS.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44026340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2019-09-06DOI: 10.4236/wjnst.2019.94011
I. Konaté, G. A. Monnehan, Douo B. L. H. Gogon, T. Dali, A. A. Koua, K. Djagouri
{"title":"Diagnostic Reference Level in Frontal Chest X-Ray in Western Côte d’Ivoire","authors":"I. Konaté, G. A. Monnehan, Douo B. L. H. Gogon, T. Dali, A. A. Koua, K. Djagouri","doi":"10.4236/wjnst.2019.94011","DOIUrl":"https://doi.org/10.4236/wjnst.2019.94011","url":null,"abstract":"Our study aims to determine diagnostic reference levels (DRL) for chest front examination in postero anterior (PA) for optimizing patient entrance surface dose (ESD) and dose-area product (DAP) of patients in west of Cote d’Ivoire. 90 patients from three hospitals undergoing conventional radiology were considered. The ESD and DAP for each patient were obtained during chest radiography (PA) examination. The measurements were performed with the device call Dose-Area Product-meter (DAP-meter) with brand Diamentor M4-KDK, type 11017. The DRL were obtained in applying the 75th percentile statistical method to the obtained ESD and DAP. The obtained DRL in ESD for chest radiography for all rooms is 0.40 mGy and in DAP is 54.85 cGy⋅cm2. Our DRL for ESD is higher than those obtained in Abidjan District and in other countries like UK and Cameroon. Our DRL for DAP is higher than those from Abidjan and all other countries for which a similar study was made. The comparison of these values to those from Abidjan and other countries, shows us that radiology technicians can make efforts to choose radiological parameters to reduce ESD. They must use convenable the X-rays tube to reduce DAP by reducing the patient exposure surface.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42045245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
核科学与技术国际期刊(英文)Pub Date : 2019-06-21DOI: 10.4236/WJNST.2019.93009
G. Toshinsky, S. Grigoriev, A. Dedul, O. Komlev, I. Tormyshev
{"title":"Safe Controlled Storage of SVBR-100 Spent Nuclear Fuel in the Extended-Range Future","authors":"G. Toshinsky, S. Grigoriev, A. Dedul, O. Komlev, I. Tormyshev","doi":"10.4236/WJNST.2019.93009","DOIUrl":"https://doi.org/10.4236/WJNST.2019.93009","url":null,"abstract":"Experience of operating reactor facilities (RF) with lead-bismuth coolant (LBC) has revealed that it is possible to perform safe refueling in short terms if the whole core is replaced and a kit of the special refueling equipment is used. However, comparing with RFs of nuclear submarines (NS), in which at the moment of performance of refueling the residual heat release is small, at RF SVBR-100 in a month after the reactor has been shut down, at the moment of performance of refueling the residual heat release is about 500 kW. Therefore, it is required to place the spent removable unit (SRU) with spent fuel subassemblies (SFSA) into the temporal storage tank (TST) filled with liquid LBC, in which the conditions for coolant natural circulation (NC) and heat removal via the tank vessel to the water cooling system are provided. After the residual heat release has been lowered to the level allowing transportation of the TST with SRU in the transporting-package container (TPC), it is proposed to consider a variant of TPCs transportation to the special site. On that site after the SRU has been reloaded into the long storage tank (LST) filled with quickly solidifying liquid lead, the TPCs can be stored during the necessary period. Thus, the controlled storage of LSTs is realized during several decades untill the time when SNF reprocessing and NFC closing are becoming economically expedient. On that storage, the four safety barriers are formed on the way of the release of radioactive products into the environment, namely: fuel matrix, fuel element cladding, solid lead and steel casing of the LST.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}