{"title":"Formability classifier for a TV back panel part with machine learning","authors":"Piemaan Fazily, Donghyuk Cho, Hyunsung Choi, Joon Ho Cho, Jongshin Lee, Jeong Whan Yoon","doi":"10.1007/s12289-023-01791-y","DOIUrl":"10.1007/s12289-023-01791-y","url":null,"abstract":"<div><p>This study proposes a machine learning-based methodology for evaluating the formability of sheet metals. An XGBoost (eXtreme Gradient Boosting) machine learning classifier is developed to classify the formability of the TV back panel based on the forming limit curve (FLC). The input to the XGBoost model is the blank thickness and cross-sectional dimensions of the screw holes, AC (Alternating Current), and AV (Audio Visual) terminals on the TV back panel. The training dataset is generated using finite element simulations and verified through experimental strain measurements. The trained classification model maps the panel geometry to one of three formability classes: safe, marginal, and cracked. Strain values below the FLC are classified as safe, those within 5% margin of the FLC are classified as marginal, and those above are classified as cracked. The statistical accuracy and performance of the classifier are quantified using the confusion matrix and multiclass Receiver Operating Characteristic (ROC) curve, respectively. Furthermore, in order to demonstrate the practical viability of the proposed methodology, the punch radius of the screw holes is optimized using Brent's method in a Java environment. Remarkably, the optimization process is completed swiftly, taking only 3.11 s. Hence, the results demonstrate that formability for a new design can be improved based on the predictions of the machine learning model.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134878225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanchao Jiang, Qichi Le, Qiyu Liao, Chenglu Hu, Ruizhen Guo, Xiaoqiang Yu, Wenyi Hu
{"title":"Simulation research on the rotating back extrusion process for magnesium alloy wheel","authors":"Yanchao Jiang, Qichi Le, Qiyu Liao, Chenglu Hu, Ruizhen Guo, Xiaoqiang Yu, Wenyi Hu","doi":"10.1007/s12289-023-01793-w","DOIUrl":"10.1007/s12289-023-01793-w","url":null,"abstract":"<div><p>The flow stress model, the dynamic recrystallization (DRX) model, the grain growth (GG) model and the Normalized Cockcroft-Latham (NC-L) ductile fracture criterion are integrated into the finite element (FE) model to simulate the physical field and DRX evolution of the AZ80 magnesium (Mg) alloy wheel forming process by the rotating back extrusion (RBE) process. The deformation behavior of the AZ80 Mg alloy wheel during the forming process is calculated quantitatively when the angular velocity (<span>(omega)</span>) is 0 to 80°/s. Findings revealed that the RBE process increases the deformation heat and effective strain in the forming process of the wheel, and refines the grain size of the whole wheel. However, excessive angular velocity (<span>(omega)</span> > 40°/s) is not conducive to the DRX of the wheel bottom, which makes the grain at the wheel core grow abnormally and reduces the uniformity of the microstructure distribution at the wheel bottom. The damage factor value at the upper rim increases with the increase in <span>(omega)</span>, i.e., the tendency of the upper rim to crack increases. Therefore, the <span>(omega)</span> of the Mg alloy wheel produced by the RBE process within the scope of this study should be set at 40°/s. The RBE process of the Mg alloy wheel can provide a new idea for the plastic forming of Mg alloy wheels.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Membrane behavior of uni- and bidirectional non-crimp fabrics in off-axis-tension tests","authors":"Bastian Schäfer, Ruochen Zheng, Naim Naouar, Luise Kärger","doi":"10.1007/s12289-023-01792-x","DOIUrl":"10.1007/s12289-023-01792-x","url":null,"abstract":"<div><p>The production of high-performance composite parts with non-crimp fabrics (NCFs) requires a profound understanding of the material’s behavior during draping to prevent forming defects such as wrinkling and gapping. Simulation methods can be used to model the complex material behavior of NCFs and predict their deformation during the draping process. However, NCFs do not intrinsically deform under pure shear like most woven fabrics, but often under superimposed shear, transverse tension and in-plane roving compaction. Therefore, non-standard characterization methods have to be applied besides typical picture frame tests or bias-extension tests. Off-axis-tension tests (OATs) utilize a simple setup to characterize a fabric’s membrane behavior under different ratios of superimposed shear, transverse tension and in-plane compaction. OATs at three different bias angles (30<span>(^circ )</span>, 45<span>(^circ )</span> and 60<span>(^circ )</span>) are conducted to investigate a unidirectional and a bidirectional NCF. A method is presented to measure the fiber curvatures in addition to the occurring strains. The investigations reveal a relatively symmetrical, shear-dominated behavior with limited roving slippage for the Biax-NCF. The behavior of the UD-NCF strongly depends on the stitching load during tests and is characterized by an asymmetric shear behavior as well as significant roving slippage. The off-axis-tension test results can be used as the basis for the development and validation of new simulation methods to model the complex membrane behavior of NCFs.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01792-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134878408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and numerical study of frictional size effects in micro-metal forming","authors":"Alireza Alidoust, Abbas Ghaei","doi":"10.1007/s12289-023-01789-6","DOIUrl":"10.1007/s12289-023-01789-6","url":null,"abstract":"<div><p>Due to the size effect phenomenon, the conventional friction models commonly used in metal forming are not accurate for use in micro-metal forming. In this study, the frictional size effect, as one of the most important phenomena in micro-metal forming, has been investigated. Different frictional models developed based on open and closed lubricant pockets theory have been investigated in both dry and lubricated frictional conditions. Those models use a scale parameter to quantify friction on the micro-scale and a real contact area to calculate the friction force at contacting surface. The models were implemented into ABAQUS finite element package via the VFRIC_COEF subroutine interface. The ring compression test with specimens of different sizes was used to determine the parameters of the models. By reducing the dimensions of the specimens in the ring compression test, no size effect was observed in dry friction conditions. However, in the lubricated frictional conditions, it was observed that the coefficient of friction increased significantly with reducing the specimen size. As the dimensions of the specimen decrease and the scale parameter approaches 1, the gap between the coefficient of friction curves increases significantly, and the coefficient of friction converges to those obtained in dry friction conditions.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of the deformation sequence on the shape accuracy of multi-point forming","authors":"Bin-Bin Jia, Yan Shen, Yanxia Gu","doi":"10.1007/s12289-023-01790-z","DOIUrl":"10.1007/s12289-023-01790-z","url":null,"abstract":"<div><p>Multi-point forming with individually controlled force–displacement (MPF-ICFD) is a novel multi-point forming process with characteristics of good deformation uniformity and high forming accuracy. The process has two different deformation sequences: positive forming (PF) and negative forming (NF). The shape accuracy of a part is significantly different when the deformation order is changed. To reveal the influence mechanism of the deformation sequence on shape accuracy, experiments and numerical simulations are used to assess shape accuracy during multi-point forming. The deformation behaviours of a cylindrical surface, sail surface and saddle surface in PF and NF processes are investigated to obtain the shape accuracy characteristics of a sheet under different deformation sequences. In addition, the strain distribution characteristics of the cylindrical surface are given quantitatively. The influence mechanism of the deformation sequence on the shape accuracy is revealed. The results show that the amount of plastic deformation on the part is significantly increased and the shape accuracy is significantly improved during the PF process. When the loading conditions are identical, the maximum strain of the cylindrical parts is increased by 73.4%, and the amount of springback is decreased by 90.0%. The above research indicates that the PF process has good application prospects in sheet metal forming.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Le Anh-Duc, Benoît Cosson, André Chateau Akué Asséko
{"title":"Investigation of the effect of light scattering on transmitted laser intensity at the weld interface during laser transmission welding of 3D printed thermoplastic parts","authors":"Le Anh-Duc, Benoît Cosson, André Chateau Akué Asséko","doi":"10.1007/s12289-023-01786-9","DOIUrl":"10.1007/s12289-023-01786-9","url":null,"abstract":"<div><p>3D printing has offered cost-effective, lightweight, and complex parts. To extend their applications, 3D printed parts need to be welded in order to form the larger functional assemblies. For this purpose, Laser Transmission Welding (LTW) is a promising joining technology. This paper aims to investigate the light scattering effect on the intensity profile of the laser heat source during the transmission through the 3D printed laser-transparent part. Indeed, the inherent design of the 3D printing technology results in a complex heterogeneous microstructure with a significant amount of porosity inside the printed parts. Such structure induces the optical diffusion (i.e. light scattering) of the laser beam within the 3D printed parts. This phenomenon leads to the reduction of the transmitted energy arriving at the weld interface, which directly influences the quality of the joint and its mechanical performance. The approach adopted in this paper is to propose a ray-tracing model to simulate the optical paths of the laser beam through the 3D printed laser-transparent part, which is able to evaluate changes in the laser heat source at the weld interface directly linked with the light scattering effect within the microstructure of the parts. Experimental measurements are performed to assess the transmitted intensity flux distribution using an image processing technique, instrumented with a digital camera and macro lens. The numerical results show good accordance with the experimental one, which proves the confidence of the proposed ray-tracing model. Finally, 3D transient thermal model of the LTW process is performed using the FEM software COMSOL Multiphysic® to confirm the influence of the scattering effect on the temperature field and thus on the quality of the weld.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaxin Lv, Zhusheng Shi, Junquan Yu, Weishu Li, Jianguo Lin
{"title":"Numerical analysis of tooling design for extruding wide aluminium hollow profiles using multi-container extrusion technology","authors":"Jiaxin Lv, Zhusheng Shi, Junquan Yu, Weishu Li, Jianguo Lin","doi":"10.1007/s12289-023-01787-8","DOIUrl":"10.1007/s12289-023-01787-8","url":null,"abstract":"<div><p>Recently a novel multi-container extrusion method has been proposed and proved feasible to simultaneously extrude multiple billets for producing thin-walled wide profiles with reduced force by experiments. Due to its different die structure compared to conventional extrusion methods, the effects of tooling geometries on the multi-container extrusion performance should be comprehensively analysed as the base of die design optimisation. In this study, the original three-container extrusion design and six modified designs were established to investigate the influence of three key geometrical variables, including container diameter, upper die height and welding chamber height, on the extrusion performance through finite element simulation. The considered extrusion performances include metal flow uniformity, extrusion force, welding pressure, die lifetime and material yield. The drawbacks of the original die design were revealed after the primary analysis of the key influencing variables and a three-step way of design improvement was proposed accordingly. Container block and upper die were optimised for the first step; welding chamber height and die bearing length were modified during the second and third steps respectively. Compared with the original design, the final optimised design can decrease the unevenness of the extrudate front shape by 75% and double the material yield, while the extrusion force, die lifetime and welding quality were basically unchanged.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01787-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integral forming of continuous CFRP sandwich sheet by additive manufacturing","authors":"Kazusa Nishi, Yuji Sato, Jun Yanagimoto","doi":"10.1007/s12289-023-01788-7","DOIUrl":"10.1007/s12289-023-01788-7","url":null,"abstract":"<div><p>Sandwich sheets comprising continuous carbon fiber reinforced plastics (CFRP) are applied mainly in the aerospace industry due to their light weight and high rigidity. However, sandwich sheets require separate formation and bonding of the face sheets and core, resulting in high labor costs and early fracture due to delamination of the adhesive layer. The purpose of this study is to overcome these problems by integrating sandwich sheet using additive manufacturing. The mechanical properties of the integrally formed sandwich sheets were compared with those of adhesively formed sandwich sheets using a three-point bending test. The strain distribution was captured by digital image correlation (DIC) during the test. Additionally, the geometric design parameters of a core with superior mechanical properties were investigated. The test results showed that the integrally formed specimens exhibited superior properties compared to those of the adhesively formed specimens. It was also observed that the larger the width angle of the corrugated core, the better the mechanical properties.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01788-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arman Mohseni, Javad Rezapour, Sina Gohari Rad, Reza Rajabiehfard
{"title":"Low velocity impact tube hydroforming process: experiments and FSI modeling by considering ductile damage model","authors":"Arman Mohseni, Javad Rezapour, Sina Gohari Rad, Reza Rajabiehfard","doi":"10.1007/s12289-023-01783-y","DOIUrl":"10.1007/s12289-023-01783-y","url":null,"abstract":"<div><p>The present paper aims to introduce a new finite element approach in numerical modeling of the impact tube hydroforming process. For this purpose, the coupled Eulerian-Lagrangian method is used to replicate the formation of the water flow, resulting from an impact, leading to the fabrication of flawless T-shaped copper tubes. One major advantage of such coupled Fluid-Structure Interaction (FSI) modeling is that it eliminates the need for measuring the parameters associated with the process including the internal pressure, and works with the minimum number of inputs such as the impact velocity. Moreover, ductile damage analysis has been performed in FE studies to further investigate the damage evolution in specimens. Experimental tests are also carried out to examine the viability of performing the impact tube hydroforming process in low velocities and also to validate the authenticity of the presented numerical method. Results corroborate the accuracy of the presented numerical approach in predicting the process parameters, the final shape, and the onset and evolution of rupture in fabricated tubes. The feasibility of this approach shows promise in wide application for finite element modeling of the hydroforming process.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134878386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Blackwell, Pavel Simacek, Roger Crane, Shridhar Yarlagadda, Suresh G. Advani
{"title":"A model for the autoclave consolidation of prepregs during manufacturing of complex curvature parts","authors":"Christopher Blackwell, Pavel Simacek, Roger Crane, Shridhar Yarlagadda, Suresh G. Advani","doi":"10.1007/s12289-023-01784-x","DOIUrl":"10.1007/s12289-023-01784-x","url":null,"abstract":"<div><p>Autoclave consolidation is used to manufacture continuous fiber composites in applications that have strict part porosity requirements. The applied positive pressure in this process is attractive for reduction in part porosity. However, some part geometries can cause porosity issues even under positive pressure. One is the concave corner seen in an L-bracket geometry. Higher porosity is seen in areas of high curvature, hindering part quality. Since the autoclave process takes several hours and prepreg material is expensive, trial-and-error methods of resolving issues are not practical. In this work, a unique physics-based viscoelastic model is proposed to describe the mechanical behavior of uncured continuous fiber thermoset prepreg undergoing consolidation under hydrostatic pressure. This model considers stress due to compaction of the fiber network, compression of voids in the resin, and viscous stress from resin flow relative to fibers. The constitutive expressions for these are coupled to important mechanisms that occur during autoclave consolidation. The viscoelastic model is incorporated into the finite element analysis software ABAQUS/Standard using a UMAT subroutine. Numerical results are validated by analytic solutions and experimental comparison for flat and L-bracket geometries. A parametric study identifies important process and material parameters that influence the quality of the manufactured part.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}