Rotary compression test for determination of critical value of hybrid damage criterion for railway steel EA1T

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Łukasz Wójcik, Tomasz Bulzak, Konrad Lis, Grzegorz Winiarski, Tomasz Kusiak
{"title":"Rotary compression test for determination of critical value of hybrid damage criterion for railway steel EA1T","authors":"Łukasz Wójcik, Tomasz Bulzak, Konrad Lis, Grzegorz Winiarski, Tomasz Kusiak","doi":"10.1007/s12289-024-01827-x","DOIUrl":null,"url":null,"abstract":"<p>The article presents and discusses the problem of determining and characterizing the cracking limits of cross-rolled specimens. The limit values were determined in accordance with the hybrid Pater criterion. For the study, the author’s test method was used, which allows the determination of the cracking moment, formed as a result of the Mannesmann effect during the compression of specimens in the channel. In order to determine the values needed to describe the cracking criterion, it was necessary to perform laboratory tests and numerical simulations of the process of compression in the channel of discs made of EA1T steel under hot forming conditions. Experimental tests were carried out for forming processes at 950 °C, 1050 °C and 1150 °C. The tested material had a disc shape with a diameter of 40 mm and a length of 20 mm, during the pressing process the diameter of the disc was reduced to a diameter of 38 mm. The increase in forming temperature caused a significant increase in the forming path until cracking occurred. Numerical tests were carried out in the finite element calculation environment Simufact.Forming 2021. The stress and strain distributions in the specimen axis were analysed during the tests, which were then used to calculate the hybrid cracking criterion limit according to Pater. After calculations according to the Pater criterion and after statistical analysis, the cracking criterion limits were obtained.</p>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12289-024-01827-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents and discusses the problem of determining and characterizing the cracking limits of cross-rolled specimens. The limit values were determined in accordance with the hybrid Pater criterion. For the study, the author’s test method was used, which allows the determination of the cracking moment, formed as a result of the Mannesmann effect during the compression of specimens in the channel. In order to determine the values needed to describe the cracking criterion, it was necessary to perform laboratory tests and numerical simulations of the process of compression in the channel of discs made of EA1T steel under hot forming conditions. Experimental tests were carried out for forming processes at 950 °C, 1050 °C and 1150 °C. The tested material had a disc shape with a diameter of 40 mm and a length of 20 mm, during the pressing process the diameter of the disc was reduced to a diameter of 38 mm. The increase in forming temperature caused a significant increase in the forming path until cracking occurred. Numerical tests were carried out in the finite element calculation environment Simufact.Forming 2021. The stress and strain distributions in the specimen axis were analysed during the tests, which were then used to calculate the hybrid cracking criterion limit according to Pater. After calculations according to the Pater criterion and after statistical analysis, the cracking criterion limits were obtained.

Abstract Image

用于确定铁路钢 EA1T 混合破坏标准临界值的旋转压缩试验
文章介绍并讨论了确定和描述横轧试样开裂极限的问题。极限值是根据混合帕特准则确定的。在研究中使用了作者的试验方法,该方法可以确定在通道中压缩试样时由于曼内斯曼效应而形成的开裂力矩。为了确定描述开裂标准所需的数值,有必要对热成型条件下 EA1T 钢制圆盘在槽道中的压缩过程进行实验室试验和数值模拟。实验测试在 950 ℃、1050 ℃ 和 1150 ℃ 下进行。测试材料的圆盘直径为 40 毫米,长度为 20 毫米,在压制过程中,圆盘直径减小到 38 毫米。成型温度的升高导致成型路径显著增加,直至出现裂纹。在有限元计算环境 Simufact.Forming 2021 中进行了数值测试。在测试过程中分析了试样轴线上的应力和应变分布,然后根据 Pater 标准计算了混合开裂标准极限。根据帕特准则进行计算并进行统计分析后,得出了开裂准则限值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信