{"title":"Reducing the Computational Cost of Bayesian Indoor Positioning Systems","authors":"Konstantinos Kleisouris, R. Martin","doi":"10.1109/SAHCN.2006.288512","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288512","url":null,"abstract":"In this work we show how to reduce the computational cost of using Bayesian networks for localization. We investigate a range of Monte Carlo sampling strategies, including Gibbs and Metropolis. We found that for our Gibbs samplers, most of the time is spent in slice sampling. Moreover, our results show that although uniform sampling over the entire domain suffers occasional rejections, it has a much lower overall computational cost than approaches that carefully avoid rejections. The key reason for this efficiency is the flatness of the full conditionals in our localization networks. Our sampling technique is also attractive because it does not require extensive tuning to achieve good performance, unlike the Metropolis samplers. We demonstrate that our whole domain sampling technique converges accurately with low latency. On commodity hardware our sampler localizes up to 10 points in less than half a second, which is over 10 times faster than a common general-purpose Bayesian sampler. Our sampler also scales well, localizing 51 objects with no location information in the training set in less than 6 seconds. Finally, we present an analytic model that describes the number of evaluations per variable using slice sampling. The model allows us to analytically determine how flat a distribution should be so that whole domain sampling is computationally more efficient when compared to other methods","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"91 1","pages":"555-564"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73651512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ece Gelal, G. Jakllari, S. Krishnamurthy, N. Young
{"title":"Topology Control to Simultaneously Achieve Near-Optimal Node Degree and Low Path Stretch in Ad hoc Networks","authors":"Ece Gelal, G. Jakllari, S. Krishnamurthy, N. Young","doi":"10.1109/SAHCN.2006.288499","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288499","url":null,"abstract":"Our objective in this paper is to design topology control algorithms such that (i) nodes have low degree and (ii) paths in the network have few hops. Low node degree is desirable in networks equipped with smart antennas and to reduce access contention. Short paths are desirable for minimizing communication delays and for better robustness to channel impairments and to mobility. Given any arbitrary unit-disc graph G representing all feasible links, our algorithms find a sparse subgraph G' having a maximum node degree of six and, for each pair of vertices u, v, having hopsG'(u, v) = O(hopsG(u,v) + logDelta), where Delta is the maximum node degree in G and hops G(u, v) denotes the shortest path length from u to v in G. This result is near-optimal: (i) there is a connected UDG G in which no connected subgraph has degree less than five, and (ii) for any graph G, any bounded-degree subgraph G' must have hopsG'(u, v) = Omega(hopsG(u, v) + logDelta) for some u, v. Our distributed algorithm scales, preserves link symmetry, does not need node synchronization, and requires only O(n) messages. We perform extensive simulations that quantify the performance of our algorithm in realistic scenarios","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"30 1","pages":"431-439"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82811246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Hybrid Multi Routing Protocol For Ad Hoc Wireless Network","authors":"Chaorong Peng, Chang Wen Chen","doi":"10.1109/SAHCN.2006.288565","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288565","url":null,"abstract":"Dynamic hybrid multi routing protocol (DHMRP) is proposed to overcome re-discovered route path to be reply path in traditional routing protocol. The protocol utilizes the reply path based on the hybrid clustering hierarchical establishment of multi routing path to gain an automatic monitoring and repairing broken links in ad hoc networks. And due to reply path and multi routing path shall exist separately in network to gain mitigation traffic \"bottlenecks\" of ClusterHeads so that improving clusters stability. Performance comparison of DHMRP with AOMDV using Glomosim simulation shows that DHMRP is able to achieve a lower data delay and route discovery ratio and higher packets deliver ratio","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"580 1","pages":"809-816"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85316234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bandwidth Consumption for Providing Fair Internet Access in Wireless Mesh Networks","authors":"T. Scherer, T. Engel","doi":"10.1109/SAHCN.2006.288555","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288555","url":null,"abstract":"The contribution of this work is to examine the performance of WMNs concerning bandwidth. Here, we provide a lower bound for bandwidth utilization in mesh networks. We analyze how much bandwidth may be provided to all mesh nodes if they communicate over one wireless communication channel and use the same gateway to the Internet. Even in such a scenario where devices compete on the access to the wireless channel it is possible to operate without bandwidth loss and share this bandwidth uniformly over the set of mesh nodes. This is achievable by optimizing spatial reuse. Here, this is achieved by scheduling channel access using time slots. Of course, this is not possible for every network topology. We measure the fraction of topologies that may operate with a uniformly shared maximum bandwidth","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"75 1","pages":"746-750"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81351335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progressive Network Coding for Message-Forwarding in Ad-Hoc Wireless Networks","authors":"Xingkai Bao, Jing Li","doi":"10.1109/SAHCN.2006.288425","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288425","url":null,"abstract":"We consider multi-hop transmission from the source to the destination in ad-hoc wireless networks. Cooperative forwarding approaches in the framework of progressive network coding are proposed which generalize coded cooperation in a multi-hop context. In this framework, the source node and each succeeding relay node progressively decode what they receive from the previous stages and re-encode the messages to different parts of the parity bits from a single (network) codeword hop by hop. The maximal achievable rates for the multi-hop wireless networks using traditional repetition-forward and progressive network coding are analyzed with respect to different transmit power constraint and packet length allocation. The optimal number of relays are derived in each scheme. It is found that progressive network coding with adaptive packet length significantly increases the system throughput and improves the energy efficiency","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"462 1","pages":"207-215"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88386854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MERIT: MEsh of RF sensors for Indoor Tracking","authors":"Yui-Wah Lee, E. P. Stuntebeck, Scott C. Miller","doi":"10.1109/SAHCN.2006.288511","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288511","url":null,"abstract":"A traditional approach to indoor tracking utilizes non-RF ranging techniques, such as infrared or ultrasound. The problem with these non-RF ranging techniques is that they do not work well when the tracking devices are buried in users' wallets or bags. As a result, there has been considerable interest in using only RF techniques for indoor tracking. Existing RF-only techniques, however, typically require a costly site survey and a floor-plan. In this paper, we present the MERIT system that we designed, implemented, and evaluated. MERIT is significantly different from existing systems in that it is pure RF-based yet it does not require a site survey nor a floor-plan. MERIT tracks users to a room granularity, and it can disambiguate neighboring rooms. This disambiguation is challenging because RF signals can traverse through walls. Also, because of indoor multipath interference, it is difficult to correlate signal strength with distance. In this work, we proposed two techniques for accurate disambiguation: spatial diversity and RF reflector. In our evaluation MERIT achieved an accuracy of 98.9%. MERIT was first conceived for a telecommunication application - intelligent telephone call routing, but it can also be used for other location-aware services","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"14 1","pages":"545-554"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82203893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circular-Layer Algorithm for Ad Hoc Sensor Networks to Balance Power Consumption","authors":"D. Wei, A. Chan, Kevin V. N. Kameri","doi":"10.1109/SAHCN.2006.288587","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288587","url":null,"abstract":"In senor networks, the data traffic from the sensors are directional towards a data sink and are therefore uneven. The areas nearer the data sink experience higher data traffic and will run out of energy sooner. Circular-layer geometry takes into account the radial data traffic towards the data sink. We may construct an algorithm to divide the network into equal-area circular-layers, which are analogous to the square design in geographical adaptive fidelity (GAF). However, the circular-layer geometry alone has not taken into account the uneven data traffic. This paper proposes a circular-layer algorithm that schedules the sensors into active and sleep states in such a way as to evenly distribute the power consumption throughout the sensor networks. We divide the network into circular layers with the data sink at the center. The algorithm equalizes the lifetime time of all layers so that the nodes near the data sink will not run out of energy sooner. Energy is also wasted in reactive routing where the sensors flood the network with omni-directional route discovery messages to find a suitable route towards the data sink. This algorithm reduces such flooding by directing the route request messages towards the data sink, resulting in more energy saving. The circular-layer geometry alone is serving to save energy. In addition, balancing the power consumption throughout the network yields an additional lifetime extension of 21% in our simulation results of a four-layer scenario","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"65 1","pages":"945-950"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77801300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Trust Based Framework for Secure Data Aggregation in Wireless Sensor Networks","authors":"W. Zhang, Sajal K. Das, Yonghe Liu","doi":"10.1109/SAHCN.2006.288409","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288409","url":null,"abstract":"In unattended and hostile environments, node compromise can become a disastrous threat to wireless sensor networks and introduce uncertainty in the aggregation results. A compromised node often tends to completely reveal its secrets to the adversary which in turn renders purely cryptography-based approaches vulnerable. How to secure the information aggregation process against compromised-node attacks and quantify the uncertainty existing in the aggregation results has become an important research issue. In this paper, we address this problem by proposing a trust based framework, which is rooted in sound statistics and some other distinct and yet closely coupled techniques. The trustworthiness (reputation) of each individual sensor node is evaluated by using an information theoretic concept, Kullback-Leibler (KL) distance, to identify the compromised nodes through an unsupervised learning algorithm. Upon aggregating, an opinion, a metric of the degree of belief, is generated to represent the uncertainty in the aggregation result. As the result is being disseminated and assembled through the routes to the sink, this opinion will be propagated and regulated by Josang's belief model. Following this model, the uncertainty within the data and aggregation results can be effectively quantified throughout the network. Simulation results demonstrate that our trust based framework provides a powerful mechanism for detecting compromised nodes and reasoning about the uncertainty in the network. It further can purge false data to accomplish robust aggregation in the presence of multiple compromised nodes","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"19 1","pages":"60-69"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73366011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relationship -based Detection of Spoofing -related Anomalous Traffic in Ad Hoc Networks","authors":"Qing Li, W. Trappe","doi":"10.1109/SAHCN.2006.288408","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288408","url":null,"abstract":"Spoofing is a serious threat for both ad hoc and sensor networks, that can cause adverse effects on a network's operations. Although cryptographic authentication can assure the identity of a transmitter, authentication is not always desirable or possible as it requires key management and more extensive computations. In this paper we argue that it is desirable to have a functionality complementary to traditional authentication that can detect device spoofing with no dependency on cryptographic material. Towards this objective, we propose using forge-resistant relationships associated with transmitted packets to detect anomalous activity. Our strategy is generic, operates in a 1-hop neighborhood, and thus can locally provide protection in order to defend ad hoc or sensor networks from anomalous intrusions. As two specific constructions, we explore the use of monotonic relationships in the sequence number fields, and the enforcement of statistical characteristics of legitimate traffic. We then provide an example of how these relationships can be used to construct a classifier that provides a multi-level threat assessment. We validate the usefulness of these methods for anomalous traffic scenarios involving multiple sources sharing the same MAC address through experiments conducted on the ORBIT wireless testbed","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"40 1","pages":"50-59"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79299168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power Efficient and Low Latency MAC for Wireless Sensor Networks","authors":"Sumeet N. Parmar, Sukumar Nandi, A. Chowdhury","doi":"10.1109/SAHCN.2006.288586","DOIUrl":"https://doi.org/10.1109/SAHCN.2006.288586","url":null,"abstract":"Existing protocols for medium access in wireless sensor networks opt for staggered wakeup scheduling among clusters of nodes. However intra-cluster contention and interference has remained an unaddressed issue. In this work we propose PELLMAC: power efficient and low latency MAC for wireless sensor networks, a schema that addresses node scheduling for channel access. By limiting contention between adjacent branches of the data gathering tree, we are able to reduce the latency of the network, as well as optimize energy utilization. Simulation results, in accordance with our claims, show that PELLMAC enhances performance in energy savings, latency and delivery ratio","PeriodicalId":58925,"journal":{"name":"Digital Communications and Networks","volume":"25 1","pages":"940-944"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80152539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}