General Relativity and Gravitation最新文献

筛选
英文 中文
Sub-annular structure in black hole image from gravitational refraction 来自引力折射的黑洞图像中的亚环状结构
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-09-16 DOI: 10.1007/s10714-024-03297-7
Gaston Giribet, Emilio Rubín de Celis, Pedro Schmied
{"title":"Sub-annular structure in black hole image from gravitational refraction","authors":"Gaston Giribet,&nbsp;Emilio Rubín de Celis,&nbsp;Pedro Schmied","doi":"10.1007/s10714-024-03297-7","DOIUrl":"10.1007/s10714-024-03297-7","url":null,"abstract":"<div><p>The images of supermassive black holes captured by the Event Horizon Telescope (EHT) collaboration have allowed us to have access to the physical processes that occur in the vicinity of the event horizons of these objects. Furthermore, black hole imaging gives rise to a new way of testing general relativity in the strong field regime. This has initiated a line of research aimed at probing different physical scenarios. While many scenarios have been proposed in the literature that yield distortion effects that would be a priori detectable at the resolution achieved by future EHT observations, the vast majority of those scenarios involve strange objects or exotic matter content. Here, we consider a less heterodox scenario which, involving non-exotic matter, in the sense that it satisfies all energy conditions and is dynamically stable, also leads to a deformation of the black hole shadow. We consider a specific concentration of non-emitting, relativistic matter of zero optical depth forming a bubble around the black hole. Due to gravitational refraction, such a self-interacting—dark—matter concentration may produce sub-annular images, i.e. subleading images inside the photon ring. We calculate the ray tracing in the space-time geometry produced by such a matter configuration and obtain the corresponding black hole images. While for concreteness we restrict our analysis to a specific matter distribution, modeling the bubble as a thin-shell, effects qualitatively similar to those described here are expected to occur for more general density profiles.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cosmic strings and gravitational waves 宇宙弦和引力波
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-09-14 DOI: 10.1007/s10714-024-03293-x
Lara Sousa
{"title":"Cosmic strings and gravitational waves","authors":"Lara Sousa","doi":"10.1007/s10714-024-03293-x","DOIUrl":"10.1007/s10714-024-03293-x","url":null,"abstract":"<div><p>Cosmic string networks are expected to generate a characteristic stochastic gravitational wave background that may be within the reach of current and upcoming gravitational wave detectors. A detection of this spectrum would provide invaluable information about the physics of the early universe, as it would allow us to probe the sequence of phase transitions that happened in the distant past. Here, I review the emission of gravitational waves by Nambu–Goto cosmic strings—thin cosmic strings that couple strongly to gravity only—and by superconducting strings—strings that carry electromagnetic currents. A comparison between the stochastic gravitational wave background predicted in these two very distinct string-forming scenarios reveals that this spectrum may have signatures that may allows us to discriminate between them observationally. The stochastic gravitational wave background generated by cosmic string networks may then enable us to uncover not only the energy-scale of the string-forming phase transition, but the underlying particle physics scenario as well.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03293-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical gravitational inspiral of two massless particles 两个无质量粒子的临界引力吸积
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-09-14 DOI: 10.1007/s10714-024-03282-0
Don N. Page
{"title":"Critical gravitational inspiral of two massless particles","authors":"Don N. Page","doi":"10.1007/s10714-024-03282-0","DOIUrl":"10.1007/s10714-024-03282-0","url":null,"abstract":"<div><p>If two ultrarelativistic nonrotating black holes of masses <span>(m_1)</span> and <span>(m_2)</span> approach each other with fixed center-of-momentum (COM) total energy <span>(E = sqrt{s} gg (m_1+m_2)c^2)</span> that has a corresponding Schwarzschild radius <span>(R = 2GE/c^4)</span> much larger than the Schwarzschild radii of the individual black holes, here it is conjectured that at the critical impact parameter <span>(b_c)</span> between scattering and coalescing into a single black hole, there will be an inspiral of many orbital rotations for <span>(m_1c^2/E ll 1)</span> and <span>(m_2c^2/E ll 1)</span> before a final black hole forms, during which all of the initial kinetic energy will be radiated away in gravitational waves by the time the individual black holes coalesce and settle down to a stationary state. In the massless limit <span>(m_1 = m_2 = 0)</span>, in which the black holes are replaced by classical massless point particles, it is conjectured that for the critical impact parameter, all of the total energy will be radiated away by the time the two particle worldlines merge and end. One might also conjecture that in the limit of starting with the massless particles having infinite energy in the infinite past with the correct ratio of impact parameter to energy, the spacetime for retarded time before the final worldline merger at zero energy will have a homothetic vector field and hence be self similar. Evidence against these conjectures is also discussed, and if it proves correct, I conjecture that two massless particles can form any number of black holes.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological dressing method for the Einstein–Maxwell equations 爱因斯坦-麦克斯韦方程的拓扑敷料法
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-09-13 DOI: 10.1007/s10714-024-03288-8
Juri Dimaschko
{"title":"Topological dressing method for the Einstein–Maxwell equations","authors":"Juri Dimaschko","doi":"10.1007/s10714-024-03288-8","DOIUrl":"10.1007/s10714-024-03288-8","url":null,"abstract":"<div><p>A regular method is proposed that makes it possible to obtain a new exact solution with a wormhole from any topologically trivial exact solution of the Einstein–Maxwell equations in an electrovacuum (topological dressing method). This solution has a structure similar to a thin-shell wormhole, but unlike it, it is exact and therefore does not require the presence of any other field sources. It is shown that the wormhole itself creates both gravitational and electromagnetic fields. The corresponding effective mass and effective charge are distributed over the surface of its throat and around it. Topological dressing of the Reissner–Nordström solution with zero effective mass and non-zero effective charge gives a new solution describing a traversable wormhole. It is shown that this solution is stable in the presence of external pressure.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended uncertainty principle via Dirac quantization 通过狄拉克量子化扩展不确定性原理
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-09-09 DOI: 10.1007/s10714-024-03292-y
Mytraya Gattu, S. Shankaranarayanan
{"title":"Extended uncertainty principle via Dirac quantization","authors":"Mytraya Gattu,&nbsp;S. Shankaranarayanan","doi":"10.1007/s10714-024-03292-y","DOIUrl":"10.1007/s10714-024-03292-y","url":null,"abstract":"<div><p>Unifying quantum theory and gravity remains a fundamental challenge in physics. While most existing literature focuses on the ultraviolet modifications of quantum theory due to gravity, this work shows that generic infrared modifications arise when we describe quantum theory in curved spacetime. We explicitly demonstrate that the modifications to the position-momentum algebra are proportional to curvature invariants (such as the Ricci scalar and Kretschmann scalar). Our results, derived through a rigorous application of Dirac’s quantization procedure, demonstrate that infrared effects in quantum systems can be axiomatically derived. We study particle dynamics in an arbitrary curved spacetime by embedding them in a higher-dimensional flat geometry. Our approach, which involves embedding particle dynamics in a higher-dimensional flat geometry and utilizing Dirac’s quantization procedure, allows us to capture the dynamics of a particle in 4-dimensional curved spacetime through a modified position-momentum algebra. When applied to various spacetimes, this method reveals that the corrections due to the spacetime curvature are universal. We further compare our results with those derived using extended uncertainty principles. Finally, we discuss the implications of our work for black holes and entanglement.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Neutron star merger remnants 更正:中子星合并残余物
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-09-03 DOI: 10.1007/s10714-024-03291-z
Sebastiano Bernuzzi
{"title":"Correction: Neutron star merger remnants","authors":"Sebastiano Bernuzzi","doi":"10.1007/s10714-024-03291-z","DOIUrl":"10.1007/s10714-024-03291-z","url":null,"abstract":"","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03291-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Durgapal-Fuloria model on isotropic spheres in Rastall gravity 各向同性球体在拉斯塔尔引力中的杜尔加帕尔-富洛里亚模型的作用
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-09-03 DOI: 10.1007/s10714-024-03290-0
Arfa Waseem, Sunaiha Naeem
{"title":"Role of Durgapal-Fuloria model on isotropic spheres in Rastall gravity","authors":"Arfa Waseem,&nbsp;Sunaiha Naeem","doi":"10.1007/s10714-024-03290-0","DOIUrl":"10.1007/s10714-024-03290-0","url":null,"abstract":"<div><p>This research deals with the impacts of Rastall parameter on the physical behavior of isotropic compact stars. For this purpose, the static spherically symmetric as well as perfect fluid distribution are taking into account. To examine the various aspects of some particular compact star models, the Durgapal-Fuloria metric functions are considered. The unknown parameters involved in Durgapal-Fuloria metric functions are computed via matching constraints with observed choices of masses and radii of few particular stellar objects. The viability of the endorsed functions is inspected through the graphical description of matter contents, energy constraints, equation of state factor, mass constituents, causality condition and stellar equation for certain values of Rastall parameter. It is determined that the stars under consideration manifest stable structures corresponding to Durgapal-Fuloria metric potentials in this framework. Further, it is exhibited that for Rastall factor equals to zero, the general results of theory of relativity can be achieved.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instabilities of black holes in Einstein-scalar–Gauss–Bonnet theories 爱因斯坦-标量-高斯-波内特理论中的黑洞不稳定性
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-08-31 DOI: 10.1007/s10714-024-03278-w
Jose Luis Blázquez-Salcedo, Burkhard Kleihaus, Jutta Kunz
{"title":"Instabilities of black holes in Einstein-scalar–Gauss–Bonnet theories","authors":"Jose Luis Blázquez-Salcedo,&nbsp;Burkhard Kleihaus,&nbsp;Jutta Kunz","doi":"10.1007/s10714-024-03278-w","DOIUrl":"10.1007/s10714-024-03278-w","url":null,"abstract":"<div><p>Black holes represent an ideal laboratory to test Einstein’s theory of general relativity and alternative theories of gravity. Among the latter, Einstein-scalar–Gauss–Bonnet Theories have received much attention in recent years. Depending on the coupling function of the scalar field, the resulting black holes may then differ significantly from their counterparts in general relativity. Focusing on the lowest modes, linear mode stability of the black holes is addressed for several types of coupling functions. When in addition to the coupling to the Gauss–Bonnet term a cosmologically motivated further term with coupling to the curvature scalar is included, a new set of instabilities arises: quadrupole and hexadecupole instabilities of spherically symmetric scalarized black holes, that are stable under radial perturbations.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 8","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03278-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-cone cuts and metricity conditions for a power-law spacetime in 2+1 and 3+1 dimensions 2+1 和 3+1 维幂律时空的光锥切割和度量条件
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-08-30 DOI: 10.1007/s10714-024-03286-w
Tina A. Harriott, J. G. Williams
{"title":"Light-cone cuts and metricity conditions for a power-law spacetime in 2+1 and 3+1 dimensions","authors":"Tina A. Harriott,&nbsp;J. G. Williams","doi":"10.1007/s10714-024-03286-w","DOIUrl":"10.1007/s10714-024-03286-w","url":null,"abstract":"<div><p>The null-surface formulation (NSF) of general relativity differs markedly from the conventional approach. The conventional approach to general relativity is concerned with local fields such as the metric, whereas the NSF focuses on surfaces. The NSF has two distinct but mathematically equivalent interpretations: (a) Future-directed light rays leave a spacetime point and intersect future null-infinity. The resulting surface, known as a light-cone cut, encodes the properties of the spacetime; (b) The angular coordinates (Bondi coordinates) of null-infinity are used to label past light cones, thereby producing a family of null surfaces. These will satisfy the NSF field equations and a solution of these equations provides a description of spacetime. This paper features a new exact solution that, for the first time, directly links the two interpretations, thereby illustrating both approaches and demonstrating their equivalence. The solution and its properties are first explored in 2+1 dimensions, after which, the generalization to 3+1 is outlined.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 8","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Faraday effect of light caused by plane gravitational wave 平面引力波引起的光的法拉第效应
IF 2.1 4区 物理与天体物理
General Relativity and Gravitation Pub Date : 2024-08-21 DOI: 10.1007/s10714-024-03283-z
Andrey A. Shoom
{"title":"Faraday effect of light caused by plane gravitational wave","authors":"Andrey A. Shoom","doi":"10.1007/s10714-024-03283-z","DOIUrl":"10.1007/s10714-024-03283-z","url":null,"abstract":"<div><p>A gravitational field can cause a rotation of the polarisation vector of light. This phenomenon is known as the gravitational Faraday effect. We study the gravitational Faraday effect of linearly polarised light propagating in the gravitational field of a weak plane gravitational wave (GW) with “<span>(+)</span>\", “<span>(times )</span>\", and elliptical polarisation modes. The corresponding gravitational Faraday rotation angle is proportional to the GW amplitude and to the squared distance traveled by the light and inversely proportional to the GW squared wavelength. The Faraday rotation is maximal if the light propagates along directions perpendicular to the GW propagation and tilted by <span>(pi /4)</span> to the directions of its polarisation. There is no a gravitational Faraday rotation when light and a GW propagate along the same directions, or when light propagates along directions of a GW polarisation. Helicity of an elliptically polarised GW gives cubic order contribution to the Faraday rotation.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 8","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03283-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信