Frontiers in Energy最新文献

筛选
英文 中文
Function-reversible facets enabling SrTiO3 nanocrystals for improved photocatalytic hydrogen evolution 功能可逆面使 SrTiO3 纳米晶体能够改善光催化氢气进化性能
IF 3.1 4区 工程技术
Frontiers in Energy Pub Date : 2023-09-10 DOI: 10.1007/s11708-023-0894-4
Bin Wang, Bei An, Xiaoqian Li, Shaohua Shen
{"title":"Function-reversible facets enabling SrTiO3 nanocrystals for improved photocatalytic hydrogen evolution","authors":"Bin Wang,&nbsp;Bei An,&nbsp;Xiaoqian Li,&nbsp;Shaohua Shen","doi":"10.1007/s11708-023-0894-4","DOIUrl":"10.1007/s11708-023-0894-4","url":null,"abstract":"<div><p>It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO<sub>3</sub> nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO<sub>3</sub> nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 1","pages":"101 - 109"},"PeriodicalIF":3.1,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78984964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface modification by ligand growth strategy for dense copper bismuth film as photocathode to enhance hydrogen production activity 通过配体生长策略对作为光电阴极的致密铜铋薄膜进行表面改性以提高制氢活性
IF 3.1 4区 工程技术
Frontiers in Energy Pub Date : 2023-08-30 DOI: 10.1007/s11708-023-0893-5
Zhouzhou Wang, Qingwei Wu, Jieming Wang, Ying Yu
{"title":"Surface modification by ligand growth strategy for dense copper bismuth film as photocathode to enhance hydrogen production activity","authors":"Zhouzhou Wang,&nbsp;Qingwei Wu,&nbsp;Jieming Wang,&nbsp;Ying Yu","doi":"10.1007/s11708-023-0893-5","DOIUrl":"10.1007/s11708-023-0893-5","url":null,"abstract":"<div><p>Hydrogen production from photoelectrochemical (PEC) water splitting has been regarded as a promising way to utilize renewable and endless solar energy. However, semiconductor film grown on photoelectrode suffers from numerous challenges, leading to the poor PEC performance. Herein, a straightforward sol-gel method with the ligand-induced growth strategy was employed to obtain dense and homogeneous copper bismuthate photocathodes for PEC hydrogen evolution reaction. By various characterizations, it was found that the nucleation and surface growth of CuBi<sub>2</sub>O<sub>4</sub> layer induced by 2-methoxyethanol ligand (2-CuBi<sub>2</sub>O<sub>4</sub>) demonstrated a decent crystallinity and coverage, as well as a large grain size and a low oxygen vacancy concentration, leading to the good ability of light absorption and carrier migration. Consequently, under simulated sunlight irradiation (AM1.5G, 100 mW/cm<sup>2</sup>), the 2-CuBi<sub>2</sub>O<sub>4</sub> photocathode achieved an enhanced photocurrent density of −1.34 mA·cm<sup>−2</sup> at 0.4 V versus the reversible hydrogen electrode and a promising applied bias photon-to-current efficiency of 0.586%. This surface modification by ligand growth strategy will shed light on the future design of advanced photoelectrodes for PEC water splitting.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 1","pages":"89 - 100"},"PeriodicalIF":3.1,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73767697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of hydrogen from fossil fuel: A review 化石燃料制氢研究进展
IF 2.9 4区 工程技术
Frontiers in Energy Pub Date : 2023-08-20 DOI: 10.1007/s11708-023-0886-4
Shams Anwar, Xianguo Li
{"title":"Production of hydrogen from fossil fuel: A review","authors":"Shams Anwar,&nbsp;Xianguo Li","doi":"10.1007/s11708-023-0886-4","DOIUrl":"10.1007/s11708-023-0886-4","url":null,"abstract":"<div><p>Production of hydrogen, one of the most promising alternative clean fuels, through catalytic conversion from fossil fuel is the most technically and economically feasible technology. Catalytic conversion of natural gas into hydrogen and carbon is thermodynamically favorable under atmospheric conditions. However, using noble metals as a catalyst is costly for hydrogen production, thus mandating non-noble metal-based catalysts such as Ni, Co, and Cu-based alloys. This paper reviews the various hydrogen production methods from fossil fuels through pyrolysis, partial oxidation, autothermal, and steam reforming, emphasizing the catalytic production of hydrogen via steam reforming of methane. The multicomponent catalysts composed of several nonnoble materials have been summarized. Of the Ni, Co, and Cu-based catalysts investigated in the literature, Ni/Al<sub>2</sub>O<sub>3</sub> catalyst is the most economical and performs best because it suppresses the coke formation on the catalyst. To avoid carbon emission, this method of hydrogen production from methane should be integrated with carbon capture, utilization, and storage (CCUS). Carbon capture can be accomplished by absorption, adsorption, and membrane separation processes. The remaining challenges, prospects, and future research and development directions are described.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 5","pages":"585 - 610"},"PeriodicalIF":2.9,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77447000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions 用于电化学水电解氢进化和氧进化反应的高熵催化剂
IF 3.1 4区 工程技术
Frontiers in Energy Pub Date : 2023-08-20 DOI: 10.1007/s11708-023-0892-6
Simiao Sha, Riyue Ge, Ying Li, Julie M. Cairney, Rongkun Zheng, Sean Li, Bin Liu, Jiujun Zhang, Wenxian Li
{"title":"High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions","authors":"Simiao Sha,&nbsp;Riyue Ge,&nbsp;Ying Li,&nbsp;Julie M. Cairney,&nbsp;Rongkun Zheng,&nbsp;Sean Li,&nbsp;Bin Liu,&nbsp;Jiujun Zhang,&nbsp;Wenxian Li","doi":"10.1007/s11708-023-0892-6","DOIUrl":"10.1007/s11708-023-0892-6","url":null,"abstract":"<div><p>High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and <i>ex-situ</i>/<i>in situ</i> characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 3","pages":"265 - 290"},"PeriodicalIF":3.1,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85433394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on different theoretical models of electrocaloric effect for refrigeration 制冷电热效应的不同理论模型综述
IF 2.9 4区 工程技术
Frontiers in Energy Pub Date : 2023-07-30 DOI: 10.1007/s11708-023-0884-6
Cancan Shao, A. A. Amirov, Houbing Huang
{"title":"A review on different theoretical models of electrocaloric effect for refrigeration","authors":"Cancan Shao,&nbsp;A. A. Amirov,&nbsp;Houbing Huang","doi":"10.1007/s11708-023-0884-6","DOIUrl":"10.1007/s11708-023-0884-6","url":null,"abstract":"<div><p>The performance parameters for characterizing the electrocaloric effect are isothermal entropy change and the adiabatic temperature change, respectively. This paper reviews the electrocaloric effect of ferroelectric materials based on different theoretical models. First, it provides four different calculation scales (the first-principle-based effective Hamiltonian, the Landau-Devonshire thermodynamic theory, phase-field simulation, and finite element analysis) to explain the basic theory of calculating the electrocaloric effect. Then, it comprehensively reviews the recent progress of these methods in regulating the electrocaloric effect and the generation mechanism of the electrocaloric effect. Finally, it summarizes and anticipates the exploration of more novel electrocaloric materials based on the framework constructed by the different computational methods.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 4","pages":"478 - 503"},"PeriodicalIF":2.9,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5147396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
In-MOF-derived In2S3/Bi2S3 heterojunction for enhanced photocatalytic hydrogen production in - mof衍生的In2S3/Bi2S3异质结增强光催化制氢
IF 2.9 4区 工程技术
Frontiers in Energy Pub Date : 2023-07-30 DOI: 10.1007/s11708-023-0885-5
Sibi Liu, Yijin Wang, Youzi Zhang, Xu Xin, Peng Guo, Dongshan Deng, Jahan B. Ghasemi, Miao Wang, Ruiling Wang, Xuanhua Li
{"title":"In-MOF-derived In2S3/Bi2S3 heterojunction for enhanced photocatalytic hydrogen production","authors":"Sibi Liu,&nbsp;Yijin Wang,&nbsp;Youzi Zhang,&nbsp;Xu Xin,&nbsp;Peng Guo,&nbsp;Dongshan Deng,&nbsp;Jahan B. Ghasemi,&nbsp;Miao Wang,&nbsp;Ruiling Wang,&nbsp;Xuanhua Li","doi":"10.1007/s11708-023-0885-5","DOIUrl":"10.1007/s11708-023-0885-5","url":null,"abstract":"<div><p>Transition metal sulfides are commonly studied as photocatalysts for water splitting in solar-to-fuel conversion. However, the effectiveness of these photocatalysts is limited by the recombination and restricted light absorption capacity of carriers. In this paper, a broad spectrum responsive In<sub>2</sub>S<sub>3</sub>/Bi<sub>2</sub>S<sub>3</sub> heterojunction is constructed by <i>in-situ</i> integrating Bi<sub>2</sub>S<sub>3</sub> with the In<sub>2</sub>S<sub>3</sub>, derived from an In-MOF precursor, via the high-temperature sulfidation and solvothermal methods. Benefiting from the synergistic effect of wide-spectrum response, effective charge separation and transfer, and strong heterogeneous interfacial contacts, the In<sub>2</sub>S<sub>3</sub>/Bi<sub>2</sub>S<sub>3</sub> heterojunction demonstrates a rate of 0.71 mmol/(g·h), which is 2.2 and 1.7 times as much as those of In<sub>2</sub>S<sub>3</sub> (0.32 mmol/(g·h) and Bi<sub>2</sub>S<sub>3</sub> (0.41 mmol/(g·h)), respectively. This paper provides a novel idea for rationally designing innovative heterojunction photocatalysts of transition metal sulfides for photocatalytic hydrogen production.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 5","pages":"654 - 663"},"PeriodicalIF":2.9,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84220856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems 以高容量镁基固态储氢材料和系统促进氢产业发展
IF 2.9 4区 工程技术
Frontiers in Energy Pub Date : 2023-07-20 DOI: 10.1007/s11708-023-0889-1
Li Ren, Yinghui Li, Xi Lin, Wenjiang Ding, Jianxin Zou
{"title":"Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems","authors":"Li Ren,&nbsp;Yinghui Li,&nbsp;Xi Lin,&nbsp;Wenjiang Ding,&nbsp;Jianxin Zou","doi":"10.1007/s11708-023-0889-1","DOIUrl":"10.1007/s11708-023-0889-1","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 3","pages":"320 - 323"},"PeriodicalIF":2.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4793649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries 高能电池用简单机械改性三维复合锂金属负极
IF 2.9 4区 工程技术
Frontiers in Energy Pub Date : 2023-07-20 DOI: 10.1007/s11708-023-0875-7
Min Hong, Zhiyong Wang, Zhangqin Shi, Zheng Liang
{"title":"Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries","authors":"Min Hong,&nbsp;Zhiyong Wang,&nbsp;Zhangqin Shi,&nbsp;Zheng Liang","doi":"10.1007/s11708-023-0875-7","DOIUrl":"10.1007/s11708-023-0875-7","url":null,"abstract":"<div><p>Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 5","pages":"569 - 584"},"PeriodicalIF":2.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83529529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rise of aluminum-chalcogen batteries: A promising path to sustainable energy storage 铝-氢电池的兴起:可持续能源储存的一条有前途的道路
IF 2.9 4区 工程技术
Frontiers in Energy Pub Date : 2023-07-13 DOI: 10.1007/s11708-023-0887-3
Lei Zhang, Binwei Zhang, Xiaoyi Dou, Wei Yan
{"title":"Rise of aluminum-chalcogen batteries: A promising path to sustainable energy storage","authors":"Lei Zhang,&nbsp;Binwei Zhang,&nbsp;Xiaoyi Dou,&nbsp;Wei Yan","doi":"10.1007/s11708-023-0887-3","DOIUrl":"10.1007/s11708-023-0887-3","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 5","pages":"567 - 568"},"PeriodicalIF":2.9,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85550564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage, and utilization technology in China 中国煤制液与碳捕集、封存和利用技术的全生命周期碳足迹及成本评估
IF 2.9 4区 工程技术
Frontiers in Energy Pub Date : 2023-06-30 DOI: 10.1007/s11708-023-0879-3
Jingjing Xie, Kai Li, Jingli Fan, Xueting Peng, Jia Li, Yujiao Xian
{"title":"Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage, and utilization technology in China","authors":"Jingjing Xie,&nbsp;Kai Li,&nbsp;Jingli Fan,&nbsp;Xueting Peng,&nbsp;Jia Li,&nbsp;Yujiao Xian","doi":"10.1007/s11708-023-0879-3","DOIUrl":"10.1007/s11708-023-0879-3","url":null,"abstract":"<div><p>The coal-to-liquid coupled with carbon capture, utilization, and storage technology has the potential to reduce CO<sub>2</sub> emissions, but its carbon footprint and cost assessment are still insufficient. In this paper, coal mining to oil production is taken as a life cycle to evaluate the carbon footprint and levelized costs of direct-coal-to-liquid and indirect-coal-to-liquid coupled with the carbon capture utilization and storage technology under three scenarios: non capture, process capture, process and public capture throughout the life cycle. The results show that, first, the coupling carbon capture utilization and storage technology can reduce CO<sub>2</sub> footprint by 28%–57% from 5.91 t CO<sub>2</sub>/t oil of direct-coal-to-liquid and 24%–49% from 7.10 t CO<sub>2</sub>/t oil of indirect-coal-to-liquid. Next, the levelized cost of direct-coal-to-liquid is 648–1027 $/t of oil, whereas that of indirect-coal-to-liquid is 653–1065 $/t of oil. When coupled with the carbon capture utilization and storage technology, the levelized cost of direct-coal-to-liquid is 285–1364 $/t of oil, compared to 1101–9793 $/t of oil for indirect-coal-to-liquid. Finally, sensitivity analysis shows that CO<sub>2</sub> transportation distance has the greatest impact on carbon footprint, while coal price and initial investment cost significantly affect the levelized cost of coal-to-liquid.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 3","pages":"412 - 427"},"PeriodicalIF":2.9,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5154727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信