Journal of Agricultural Biological and Environmental Statistics最新文献

筛选
英文 中文
Design of Agricultural Field Experiments Accounting for both Complex Blocking Structures and Network Effects 考虑复杂块结构和网络效应的农业田间试验设计
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-04-19 DOI: 10.1007/s13253-023-00544-3
Vasiliki Koutra, S. Gilmour, Ben M. Parker, Andrew Mead
{"title":"Design of Agricultural Field Experiments Accounting for both Complex Blocking Structures and Network Effects","authors":"Vasiliki Koutra, S. Gilmour, Ben M. Parker, Andrew Mead","doi":"10.1007/s13253-023-00544-3","DOIUrl":"https://doi.org/10.1007/s13253-023-00544-3","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73018534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularised Semi-parametric Composite Likelihood Intensity Modelling of a Swedish Spatial Ambulance Call Point Pattern 瑞典空间救护车呼叫点模式的正则化半参数复合似然强度建模
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-04-15 DOI: 10.1007/s13253-023-00534-5
Fekadu L. Bayisa, M. Ådahl, Patrik Rydén, O. Cronie
{"title":"Regularised Semi-parametric Composite Likelihood Intensity Modelling of a Swedish Spatial Ambulance Call Point Pattern","authors":"Fekadu L. Bayisa, M. Ådahl, Patrik Rydén, O. Cronie","doi":"10.1007/s13253-023-00534-5","DOIUrl":"https://doi.org/10.1007/s13253-023-00534-5","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75424815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimation and Clustering of Directional Wave Spectra 方向波谱的估计与聚类
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-04-13 DOI: 10.1007/s13253-023-00543-4
Zihao Wu, Carolina Euán, R. Crujeiras, Yinge Sun
{"title":"Estimation and Clustering of Directional Wave Spectra","authors":"Zihao Wu, Carolina Euán, R. Crujeiras, Yinge Sun","doi":"10.1007/s13253-023-00543-4","DOIUrl":"https://doi.org/10.1007/s13253-023-00543-4","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87128558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rankıng Districts of Çanakkale in Terms of Rangeland Quality by Fuzzy MCDM Methods 利用模糊MCDM方法对Çanakkale地区的草地质量进行评价
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-04-05 DOI: 10.1007/s13253-023-00532-7
Zeynep Gökkuş, Sevil Sentürk, F. Alatürk
{"title":"Rankıng Districts of Çanakkale in Terms of Rangeland Quality by Fuzzy MCDM Methods","authors":"Zeynep Gökkuş, Sevil Sentürk, F. Alatürk","doi":"10.1007/s13253-023-00532-7","DOIUrl":"https://doi.org/10.1007/s13253-023-00532-7","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74861639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems 疾病监测系统中优先抽样校正的共享潜伏过程模型
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-04-03 DOI: 10.1007/s13253-023-00535-4
Brian Conroy, L. Waller, Ian D. Buller, Gregory M. Hacker, James R. Tucker, M. Novak
{"title":"A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems","authors":"Brian Conroy, L. Waller, Ian D. Buller, Gregory M. Hacker, James R. Tucker, M. Novak","doi":"10.1007/s13253-023-00535-4","DOIUrl":"https://doi.org/10.1007/s13253-023-00535-4","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76691547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality. 估算连续误差暴露的因果暴露反应函数:细颗粒物与全因死亡率研究》。
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-03-01 Epub Date: 2022-09-11 DOI: 10.1007/s13253-022-00508-z
Kevin P Josey, Priyanka deSouza, Xiao Wu, Danielle Braun, Rachel Nethery
{"title":"Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality.","authors":"Kevin P Josey, Priyanka deSouza, Xiao Wu, Danielle Braun, Rachel Nethery","doi":"10.1007/s13253-022-00508-z","DOIUrl":"10.1007/s13253-022-00508-z","url":null,"abstract":"<p><p>Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM<sub>2.5</sub>) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM<sub>2.5</sub> concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a more accurate ERF estimate. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM<sub>2.5</sub> on all-cause mortality among Medicare enrollees in New England from 2000-2012.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies 功能线性回归的融合学习及其在基因型与环境相互作用研究中的应用
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-02-06 DOI: 10.1007/s13253-023-00529-2
Shan Yu, Aaron Kusmec, Li Wang, D. Nettleton
{"title":"Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies","authors":"Shan Yu, Aaron Kusmec, Li Wang, D. Nettleton","doi":"10.1007/s13253-023-00529-2","DOIUrl":"https://doi.org/10.1007/s13253-023-00529-2","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90376897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations 遥感质量标记观测贝叶斯潜变量协同克里格模型
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-02-04 DOI: 10.1007/s13253-023-00530-9
B. Konomi, E. Kang, Ayat Almomani, J. Hobbs
{"title":"Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations","authors":"B. Konomi, E. Kang, Ayat Almomani, J. Hobbs","doi":"10.1007/s13253-023-00530-9","DOIUrl":"https://doi.org/10.1007/s13253-023-00530-9","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74595472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Approach for Specifying Trimming and Winsorization Cutoffs 一种指定修剪和加权截止点的方法
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-01-24 DOI: 10.1007/s13253-023-00527-4
Kedai Cheng, D. S. Young
{"title":"An Approach for Specifying Trimming and Winsorization Cutoffs","authors":"Kedai Cheng, D. S. Young","doi":"10.1007/s13253-023-00527-4","DOIUrl":"https://doi.org/10.1007/s13253-023-00527-4","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77473434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series. 空间相关函数时间序列的异步变更点估计。
IF 1.4 4区 数学
Journal of Agricultural Biological and Environmental Statistics Pub Date : 2023-01-01 DOI: 10.1007/s13253-022-00519-w
Mengchen Wang, Trevor Harris, Bo Li
{"title":"Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series.","authors":"Mengchen Wang,&nbsp;Trevor Harris,&nbsp;Bo Li","doi":"10.1007/s13253-022-00519-w","DOIUrl":"https://doi.org/10.1007/s13253-022-00519-w","url":null,"abstract":"<p><p>We propose a new solution under the Bayesian framework to simultaneously estimate mean-based asynchronous changepoints in spatially correlated functional time series. Unlike previous methods that assume a shared changepoint at all spatial locations or ignore spatial correlation, our method treats changepoints as a spatial process. This allows our model to respect spatial heterogeneity and exploit spatial correlations to improve estimation. Our method is derived from the ubiquitous cumulative sum (CUSUM) statistic that dominates changepoint detection in functional time series. However, instead of directly searching for the maximum of the CUSUM-based processes, we build spatially correlated two-piece linear models with appropriate variance structure to locate all changepoints at once. The proposed linear model approach increases the robustness of our method to variability in the CUSUM process, which, combined with our spatial correlation model, improves changepoint estimation near the edges. We demonstrate through extensive simulation studies that our method outperforms existing functional changepoint estimators in terms of both estimation accuracy and uncertainty quantification, under either weak or strong spatial correlation, and weak or strong change signals. Finally, we demonstrate our method using a temperature data set and a coronavirus disease 2019 (COVID-19) study. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00519-w.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10687024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信