Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series.

IF 1.4 4区 数学 Q3 BIOLOGY
Mengchen Wang, Trevor Harris, Bo Li
{"title":"Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series.","authors":"Mengchen Wang,&nbsp;Trevor Harris,&nbsp;Bo Li","doi":"10.1007/s13253-022-00519-w","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new solution under the Bayesian framework to simultaneously estimate mean-based asynchronous changepoints in spatially correlated functional time series. Unlike previous methods that assume a shared changepoint at all spatial locations or ignore spatial correlation, our method treats changepoints as a spatial process. This allows our model to respect spatial heterogeneity and exploit spatial correlations to improve estimation. Our method is derived from the ubiquitous cumulative sum (CUSUM) statistic that dominates changepoint detection in functional time series. However, instead of directly searching for the maximum of the CUSUM-based processes, we build spatially correlated two-piece linear models with appropriate variance structure to locate all changepoints at once. The proposed linear model approach increases the robustness of our method to variability in the CUSUM process, which, combined with our spatial correlation model, improves changepoint estimation near the edges. We demonstrate through extensive simulation studies that our method outperforms existing functional changepoint estimators in terms of both estimation accuracy and uncertainty quantification, under either weak or strong spatial correlation, and weak or strong change signals. Finally, we demonstrate our method using a temperature data set and a coronavirus disease 2019 (COVID-19) study. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00519-w.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579602/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-022-00519-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a new solution under the Bayesian framework to simultaneously estimate mean-based asynchronous changepoints in spatially correlated functional time series. Unlike previous methods that assume a shared changepoint at all spatial locations or ignore spatial correlation, our method treats changepoints as a spatial process. This allows our model to respect spatial heterogeneity and exploit spatial correlations to improve estimation. Our method is derived from the ubiquitous cumulative sum (CUSUM) statistic that dominates changepoint detection in functional time series. However, instead of directly searching for the maximum of the CUSUM-based processes, we build spatially correlated two-piece linear models with appropriate variance structure to locate all changepoints at once. The proposed linear model approach increases the robustness of our method to variability in the CUSUM process, which, combined with our spatial correlation model, improves changepoint estimation near the edges. We demonstrate through extensive simulation studies that our method outperforms existing functional changepoint estimators in terms of both estimation accuracy and uncertainty quantification, under either weak or strong spatial correlation, and weak or strong change signals. Finally, we demonstrate our method using a temperature data set and a coronavirus disease 2019 (COVID-19) study. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00519-w.

Abstract Image

Abstract Image

Abstract Image

空间相关函数时间序列的异步变更点估计。
我们在贝叶斯框架下提出了一种新的方法来同时估计空间相关函数时间序列中基于均值的异步变化点。与之前的方法不同,我们的方法假设在所有空间位置都有一个共享的变更点,或者忽略空间相关性,我们的方法将变更点视为一个空间过程。这使得我们的模型能够尊重空间异质性并利用空间相关性来改进估计。我们的方法来源于泛在累积和(CUSUM)统计量,它在功能时间序列的变化点检测中占主导地位。然而,我们不是直接搜索基于cusum的过程的最大值,而是建立具有适当方差结构的空间相关的两件线性模型来一次定位所有的变化点。所提出的线性模型方法提高了我们的方法对CUSUM过程变异性的鲁棒性,并且与我们的空间相关模型相结合,改进了边缘附近的变化点估计。我们通过广泛的模拟研究证明,我们的方法在估计精度和不确定性量化方面都优于现有的功能变化点估计器,无论是在弱或强空间相关性下,还是在弱或强变化信号下。最后,我们使用温度数据集和2019冠状病毒病(COVID-19)研究来演示我们的方法。本文附带的补充资料出现在网上。本文的补充资料请参见10.1007/s13253-022-00519-w。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信