Sustainable Energy Grids & Networks最新文献

筛选
英文 中文
Secured energy data transaction for prosumers under diverse cyberattack scenarios 在各种网络攻击情况下确保能源消费者的能源数据交易安全
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-28 DOI: 10.1016/j.segan.2024.101555
{"title":"Secured energy data transaction for prosumers under diverse cyberattack scenarios","authors":"","doi":"10.1016/j.segan.2024.101555","DOIUrl":"10.1016/j.segan.2024.101555","url":null,"abstract":"<div><div>Due to the increasing use of renewable energy sources and the advancement of smart grid technology, bilateral energy transactions between prosumers have attracted significant interest as a potential solution for efficient and decentralized energy distribution. Prosumers can establish direct energy exchanges by utilizing internet of things (IoT) technologies and arrangements with smart metering capabilities, eliminating the need for middlemen and allowing for more effective use of renewable energy sources. However, these direct energy exchanges between prosumers can be susceptible to cyber-threats, which hinder secure and effective energy transactions while protecting privacy. To enable safe and seamless energy transactions among prosumers and the grid, the cyber-security of IoT devices should be of paramount significance as a possible solution. Therefore, this paper focuses on securing the energy transactions among prosumers facilitated by smart meters. It aims to address potential threats against data integrity, confidentiality, and availability from the prosumers’ point of view and develop a comprehensive framework for securing energy transactions based on artificial intelligence (AI). The proposed structured roadmap not only identifies compromised trading data but also prevents prosumers from reacting to it by replacing the contaminated as well as missing trading data. A comparative analysis on AI-based algorithms indicates that decision tree (DT) outperforms support vector machine (SVM) and multi-layer perceptron (MLP) for the proposed framework to profile the corrupted trading data identification and categorization in order to provide effective outcomes. Additionally, the proposed framework adopts a deep learning (DL)-based model for the replacement of compromised trading data. All the numerical analyses, along with extensive simulation results, justify, the efficacy of the proposed framework.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the long-term benefits of EU electricity highways: The case of the Green Aegean Interconnector 调查欧盟电力高速公路的长期效益:绿色爱琴海互联线路案例
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-24 DOI: 10.1016/j.segan.2024.101558
{"title":"Investigating the long-term benefits of EU electricity highways: The case of the Green Aegean Interconnector","authors":"","doi":"10.1016/j.segan.2024.101558","DOIUrl":"10.1016/j.segan.2024.101558","url":null,"abstract":"<div><div>This paper investigates the potential long-term benefits that could be arisen by the construction and operation of the envisioned “Green Aegean Interconnector”. This will be a pioneering 9-GW direct interconnection line connecting Greece with Germany to facilitate the transfer of massive amounts of RES generation from South-East to Central-North Europe. The ultimate goal of this analysis is to estimate the total electricity supply cost to be undertaken by the end-consumers in Greece with and without the said interconnector along with the cost/benefit of the Greek national economy associated with the foreseen cross-border electricity exchange. Detailed simulations of the Greek electricity market using a specialized electricity market simulation software on the basis of the main provisions of the revised Greek National Energy and Climate Plan are performed under realistic market evolution scenarios for a future 30-year study horizon (2026–2055). Simulation results and the associated cost-benefit analysis indicate that such a project would enable the operation of additional RES projects in Greece. This would, in turn, decrease the overall Greek end-consumers’ electricity cost and create a significant surplus for the Greek economy through the increased exporting activity, whereas at EU-level it would assist towards further achieving the European energy market integration.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockchain-enabled transformation: Decentralized planning and secure peer-to-peer trading in local energy networks 区块链驱动的转型:地方能源网络的去中心化规划和安全的点对点交易
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-21 DOI: 10.1016/j.segan.2024.101556
{"title":"Blockchain-enabled transformation: Decentralized planning and secure peer-to-peer trading in local energy networks","authors":"","doi":"10.1016/j.segan.2024.101556","DOIUrl":"10.1016/j.segan.2024.101556","url":null,"abstract":"<div><div>This paper introduces a novel blockchain-based automatic load response architecture for local energy networks, focusing on secure peer-to-peer (P2P) energy trading and decentralized planning. Departing from traditional centralized methods, the proposed system leverages non-cooperative game theory for pricing-based decentralized planning, enabling efficient resource distribution without a central authority. A key contribution is the integration of a machine-governed smart contract mechanism, which ensures secure, transparent, and consistent transactions in P2P energy trading. Additionally, an adaptive evaluation system for transaction nodes enhances the system’s responsiveness to dynamic energy demands. A distributed algorithm is developed to optimize the implementation of this architecture, ensuring practical efficiency. Case studies confirm significant improvements in operational efficiency, security, and economic outcomes, marking a substantial advancement in decentralized energy management. Key findings demonstrate that the proposed automatic load response strategy significantly enhances load curve stability, achieving a 99.16 % reduction in net load fluctuations and an 8.24 % reduction in operational costs compared to traditional methods. Additionally, the framework improves the self-consumption rate of renewable energy by up to 14.62 % and reduces the average cost for electric vehicle (EV) users by 26.12 %. These results highlight the framework's effectiveness in fostering a more balanced supply-demand relationship within local energy networks while ensuring economic and computational efficiency. The study underscores the potential to revolutionize decentralized energy management, offering a sustainable and cost-effective solution for future energy systems.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated real-time dispatch of power and gas systems 电力和天然气系统的综合实时调度
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-20 DOI: 10.1016/j.segan.2024.101554
{"title":"Integrated real-time dispatch of power and gas systems","authors":"","doi":"10.1016/j.segan.2024.101554","DOIUrl":"10.1016/j.segan.2024.101554","url":null,"abstract":"<div><div>The integrated operation of the electricity and gas systems has attracted the attention of many researchers due to the ever-increasing interdependency between the two systems. In this paper, a novel framework for the real-time rolling dispatch of the integrated system is presented, targeting to attain the economically optimal and technically secure gas system real-time operation through the control of the available flexibility procured by various resources. A decoupled day-ahead scheduling is initially executed to determine unit commitment and gas linepack target decisions, which are then utilized as inputs to the proposed integrated real-time dispatch model. Intra-day gas system control is executed in a hierarchical procedure through the deployment of four control actions from various inter-system flexibility providers. The presented analysis illustrates that, based on the selection of control parameters, the activation of flexibility resources from both systems can be steered in such a way as to alleviate linepack deviations, even in cases of severely limited scheduled gas supply. The proposed control framework is tested on the Greek power and gas systems, providing significant insights regarding the activation of the control actions for the real-time gas system balancing in different look-ahead horizons.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning based fault location method for power distribution systems using wavelet scattering networks 基于机器学习的小波散射网络配电系统故障定位方法
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-18 DOI: 10.1016/j.segan.2024.101551
{"title":"A machine learning based fault location method for power distribution systems using wavelet scattering networks","authors":"","doi":"10.1016/j.segan.2024.101551","DOIUrl":"10.1016/j.segan.2024.101551","url":null,"abstract":"<div><div>This paper proposes a novel machine learning based method for localizing single-line-to-ground faults in modern power distribution systems using single-end measurements. The challenge of identifying the faulty lateral is formulated as a support vector machine model-based classification problem, where a class represents a different part of the distribution network. The challenge of finding the exact fault distance is formulated as an ensemble model-based regression problem. Both models are trained with scattering coefficients extracted from the application of a wavelet scattering network on the captured faulty phase voltage signal. The performance of the proposed fault location method is evaluated with a comprehensive simulation study, conducted for the IEEE 34-bus test distribution system. The results demonstrate the efficacy of the proposed method in terms of fault location accuracy, as well as its sufficient insensitivity against several influencing factors, such as load, DG, external system strength, and network topology variations. Comparison of the proposed method with other well-established machine learning based fault location methods for power distribution systems reveals its great performance.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-stage low-carbon economic dispatch of an integrated energy system considering flexible decoupling of electricity and heat on sides of source and load 综合能源系统的两阶段低碳经济调度,考虑电力和热力在源端和负载端的灵活解耦
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-18 DOI: 10.1016/j.segan.2024.101552
{"title":"Two-stage low-carbon economic dispatch of an integrated energy system considering flexible decoupling of electricity and heat on sides of source and load","authors":"","doi":"10.1016/j.segan.2024.101552","DOIUrl":"10.1016/j.segan.2024.101552","url":null,"abstract":"<div><div>Under the goal of \"double carbon\", in order to further enhance the level of new energy consumption and solve the problem of restricting the flexibility of the system by \"ordering power by heat\" of combined heat and power (CHP) units, a low-carbon economic planning strategy with flexible decoupling of electricity and heat is proposed, by introducing a new type of electric-thermal coupling equipment on both sides of the source and load. Firstly, Consideration of the low-carbon and environmentally friendly characteristics of green ammonia production and ammonia-doped combustion technologies, a wind power(WT) – power to ammonia(P2A) - CHP units - thermal power (TH) units joint operation strategy is proposed on the source side. This strategy realizes the conversion of abandoned wind to green ammonia to ammonia coal hybrid generation, the decoupled operation of CHP units and promotes the consumption of wind power and the low-carbon operation of the system. Secondly, A dynamic incentive demand response model is developed to meet the demand of high proportion distributed PV in situ consumption on the load side. The dynamic incentive price guides the distributed power-to-heat load to change the response capacity, tracks the abandonment of wind and light, realizes the flexible conversion of power and heat load, and cooperates with the source side to promote the coupling operation of electric pyrolysis. On this basis, consider the flexible decoupling capability of electric-heat coupling equipment on both sides of the source and load to establish a two-phase low-carbon scheduling model for the day-before and day-after phases. In the day-ahead phase, the source-side electric-thermal-ammonia joint operation strategy is considered, and the electric and thermal energy supply plans are adjusted centrally; In the intra-day phase, the flexible adjustment range of power-to-heat devices and the heat load inertia on the load side are taken into account, and the electricity and heat planning strategies are adjusted in a distributed-centralised manner in conjunction with the source side. Finally, through the simulation of different cases, the results show that compared with the traditional electric heating system, the total cost of the system considering the scheduling strategy proposed in this paper decreases by ¥826,900, the carbon emission decreases by 1.2 t, and basically realises the consumption of wind power and distributed photovoltaic power output. The proposed scheme reduces carbon emissions, promotes the consumption of wind power and distributed photovoltaic output, and is able to reach the goal of low-carbon economic dispatch.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A method for configuring hybrid electrolyzers based on joint wind and photovoltaic power generation modeling using copula functions 基于使用 copula 函数的风力和光伏联合发电建模的混合电解槽配置方法
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-16 DOI: 10.1016/j.segan.2024.101539
{"title":"A method for configuring hybrid electrolyzers based on joint wind and photovoltaic power generation modeling using copula functions","authors":"","doi":"10.1016/j.segan.2024.101539","DOIUrl":"10.1016/j.segan.2024.101539","url":null,"abstract":"<div><div>Considering the specific wind and photovoltaic power characteristics of a certain region, this study investigates the optimal ratio of Alkaline Electrolysis Cells (AEL) to Proton Exchange Membrane (PEM) electrolyzers in a hybrid electrolysis system for hydrogen production. A flexible model for configuring the hybrid electrolysis system is proposed, based on a copula function for joint wind and solar power modeling. This model generates wind and photovoltaic power generation scenarios using the copula function, incorporating a selection mechanism to ensure that the output scenarios are more representative of the actual data characteristics of wind and photovoltaic power output. Consequently, considering both the fluctuation and amplitude, the wind and photovoltaic power data are decomposed using the Ensemble empirical mode decomposition method. The decomposed components are then allocated to the two types of electrolyzers. Furthermore, the optimal configuration of the hybrid electrolysis system is determined by minimizing the costs associated with wasted power, electricity purchases, and other expenses. Finally, a case study of a 100 MW wind farm and a 50 MW photovoltaic power station in Northwest China is presented, concluding that the optimal configuration ratio of AEL to PEM electrolyzers is 2:1. In a Matlab/Simulink platform, the performance metrics of the hybrid electrolysis system were validated. It was found that the hydrogen production rate of the hybrid electrolyzer is comparable to that of the PEM electrolyzer, but with a lower required cost. Additionally, the hydrogen production rate and volume of the optimal configuration for the hybrid electrolyzer determined by the model proposed in this paper are higher than those obtained through the optimization algorithm's optimal configuration.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of electricity sales offer strategies applicable to the participation of multi-energy generators in short- and medium-term markets 适用于多能源发电机参与中短期市场的售电报价战略研究
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-16 DOI: 10.1016/j.segan.2024.101553
{"title":"A study of electricity sales offer strategies applicable to the participation of multi-energy generators in short- and medium-term markets","authors":"","doi":"10.1016/j.segan.2024.101553","DOIUrl":"10.1016/j.segan.2024.101553","url":null,"abstract":"<div><div>Due to the increasing proportion of renewable energy, a multi-layered and multi-timescale energy market has emerged in many countries such as China. In the meanwhile, power generation companies must develop more intelligent and dynamic offer strategies to adapt to today's intricate energy trading. Because of the difficulty in describing the dynamic trading environment caused by the uncertainty of renewable energy, previous studies have not fully explored the offer strategy especially in both short-term and medium-term electricity markets. In response to this challenge, this research introduces a novel biding strategy framework leveraging a Asynchronous Advantage Actor-Critic (A3C) algorithm, which can effectively address the decision making in dynamic and uncertain energy markets. The framework focuses on intra-monthly transaction clearing mechanisms with the aim of optimally enhancing earnings. The research formulates an offer model both for thermal and renewable power generation enterprises, which is applicable to medium-term monthly and intra-monthly trading. The study then validates this framework through three distinct analyses: the returns of various bid methods under standard scenarios, the offer strategies return of power generation companies with diverse cost profiles, and the impact of varying renewable energy proportions. The multi-angle simulations confirm that the model presented in this paper offers a scientific basis for the development of offer strategies for power generation companies and enable power generating firms to effectively adopt to the current power market.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexibility potential quantification of electric vehicle charging clusters 电动汽车充电集群的灵活性潜力量化
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-16 DOI: 10.1016/j.segan.2024.101547
{"title":"Flexibility potential quantification of electric vehicle charging clusters","authors":"","doi":"10.1016/j.segan.2024.101547","DOIUrl":"10.1016/j.segan.2024.101547","url":null,"abstract":"<div><div>A significant obstacle to providing flexibility services with electric vehicles (EVs) is the uncertainty surrounding the profitability and flexibility potential of charging clusters when utilized as a flexible load. Currently, there is a lack of comprehensive and easily applicable methods for quantifying flexibility in the literature. This paper introduces an evaluation tool and a set of flexibility indexes to assess the capability of charging clusters to deliver flexibility services. The method is designed to evaluate and quantify the flexibility potential of charging clusters in terms of short-term and long-term power adjustments and charge scheduling. Through sensitivity analysis, we examine how connection capacity, EV battery capacities, power capabilities, and the number of daily charging sessions influence the flexibility potential of charging clusters. Our findings highlight a direct relationship between the grid connection capacity of clusters and their ability to perform short-term power adjustments. Moreover, while larger batteries tend to reduce energy and time flexibility, their increased storage capability facilitates managing and scheduling a larger energy volume. Furthermore, for the days analysed, the flexibility potential showed minimal sensitivity to the number of daily charging sessions. Instead, the amount of energy requested and connection patterns emerge as key determinants of overall flexibility. In summary, this research provides valuable insights that can inform the design, monitoring, and assessment of EV charging clusters when evaluating their suitability for various flexibility services.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of online voltage stability indices based on synchronized PMU measurements 基于同步 PMU 测量的在线电压稳定性指数比较分析
IF 4.8 2区 工程技术
Sustainable Energy Grids & Networks Pub Date : 2024-10-16 DOI: 10.1016/j.segan.2024.101544
{"title":"Comparative analysis of online voltage stability indices based on synchronized PMU measurements","authors":"","doi":"10.1016/j.segan.2024.101544","DOIUrl":"10.1016/j.segan.2024.101544","url":null,"abstract":"<div><div>The need for reliable real-time information on voltage stability margins of electrical power systems is an increasingly relevant concern within the current trend of electrification and deployment of power electronics-based devices. This paper conducts the assessment and comparison of four Voltage Stability Indices (VSIs) proposed for this application and based exclusively on synchronized phasor measurements. The robustness and accuracy of each method in identifying the point of maximum power transfer are evaluated as the correlation between load characteristics and consistent estimation of voltage stability margins is explored. In addition, the likelihood inherent to each VSI formulation of triggering false alarms under certain system dynamics is addressed in detail. The comparative analyses are derived from dynamic simulation data of a 3-bus test system, the IEEE 9-bus network and the IEEE 39-bus network, all modelled in the open-source Python-based power system simulator DynPSSimPy. Case studies cover placement of monitoring device, different load types, line disconnection events and presence of measurement noise. The results presented serve as a reference point for the development and/or enhancement of VSIs suitable for real-time applications, highlighting their most significant advantages and drawbacks and providing insights on potential trade-offs that need to be considered when employing such approaches within control centre settings.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信