Molecular Phylogenetics and Evolution最新文献

筛选
英文 中文
The genetic consequences of historic climate change on the contemporary population structure of a widespread temperate North American songbird 历史性气候变化对北美温带广泛分布的一种鸣禽当代种群结构的遗传影响。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-10-09 DOI: 10.1016/j.ympev.2024.108216
Alison Cloutier , David Tsz Chung Chan, Emily Shui Kei Poon , Simon Yung Wa Sin
{"title":"The genetic consequences of historic climate change on the contemporary population structure of a widespread temperate North American songbird","authors":"Alison Cloutier ,&nbsp;David Tsz Chung Chan,&nbsp;Emily Shui Kei Poon ,&nbsp;Simon Yung Wa Sin","doi":"10.1016/j.ympev.2024.108216","DOIUrl":"10.1016/j.ympev.2024.108216","url":null,"abstract":"<div><div>Studies of widely distributed species can inform our understanding of how past demographic events tied to historic glaciation and ongoing population genetic processes interact to shape contemporaneous patterns of biodiversity at a continental scale. In this study, we used whole-genome resequencing to investigate the current population structure and genetic signatures of past demographic events in the widespread migratory American goldfinch (<em>Spinus tristis</em>). Phylogenetic relationships inferred from whole mitochondrial genomes were poorly resolved. In contrast, a genome-wide panel of &gt; 4.5 million single nucleotide polymorphisms (SNPs) strongly supported the existence of eastern and western populations separated by western mountain ranges and additional population structuring within the western clade. Demographic modeling estimated that the eastern and western populations diverged approximately one million years ago, and both populations experienced subsequent population bottlenecks during the last glacial period. Species distribution models showed a severe contraction of suitable habitat for the American goldfinch during this period, with predicted discontinuities that are consistent with multiple, isolated glacial refugia that coincide with present-day population structure. Low overall genetic differentiation between the eastern and western populations (F<sub>ST</sub> ∼ 0.01) suggests ongoing gene flow accompanied divergence, and individuals with admixed genomic signatures were sampled along a potential contact zone. Nevertheless, outlier SNPs were identified near genes associated with feather color, song, and migratory behavior and provide strong candidates for further study of the mechanisms underlying reproductive isolation and speciation in birds.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108216"},"PeriodicalIF":3.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back together: Over 1000 single-copy nuclear loci and reproductive features support the holoendoparasitic Apodanthaceae and Rafflesiaceae as sister lineages in the order Malpighiales 回到一起超过 1000 个单拷贝核基因位点和生殖特征支持全内寄生的 Apodanthaceae 与 Malpighiales 目中的 Rafflesiaceae 为姐妹。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-10-09 DOI: 10.1016/j.ympev.2024.108217
Juan F. Alzate , Favio A. González , Natalia Pabón-Mora
{"title":"Back together: Over 1000 single-copy nuclear loci and reproductive features support the holoendoparasitic Apodanthaceae and Rafflesiaceae as sister lineages in the order Malpighiales","authors":"Juan F. Alzate ,&nbsp;Favio A. González ,&nbsp;Natalia Pabón-Mora","doi":"10.1016/j.ympev.2024.108217","DOIUrl":"10.1016/j.ympev.2024.108217","url":null,"abstract":"<div><div>The systematics of the holoendoparasitic flowering plant families Apodanthaceae and Rafflesiaceae has been discussed for over two centuries. The morphological reduction of roots, shoots and leaves in all members of both families, resulting in a cryptic mycelium-like vegetative body, has been interpreted either as a key common feature, or as a result of convergent evolution due to full dependence upon their hosts. Historically, the two families have been placed together due to similar morphological features, but recent analyses based on few mitochondrial and ribosomal gene markers placed them in the distantly related orders Cucurbitales and Malpighiales. Here we reevaluate the affinities of the Apodanthaceae and the Rafflesiaceae using a phylogenomic approach. We present (1) a historical account on their affinities over the last 200 years; (2) phylogenetic analyses reinstating their sister group relationship as part of the order Malpighiales, based on over 1000 single-copy nuclear protein-coding loci; and (3) a comprehensive list of putative morphoanatomical and developmental synapomorphies in light of the phylogenomic results, with emphasis on shared reproductive traits regardless of dramatic differences in floral size.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108217"},"PeriodicalIF":3.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling the high latitudes: evolution, diversification, and dispersal of Coryphella nudibranchs across the Northern Hemisphere 在高纬度地区扩展:北半球裸鳃珊瑚的进化、多样化和扩散。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-10-04 DOI: 10.1016/j.ympev.2024.108214
Irina A. Ekimova , Dimitry M. Schepetov , Brenna Green , Maria V. Stanovova , Tatiana I. Antokhina , Terrence Gosliner , Manuel Antonio E. Malaquias , Ángel Valdés
{"title":"Scaling the high latitudes: evolution, diversification, and dispersal of Coryphella nudibranchs across the Northern Hemisphere","authors":"Irina A. Ekimova ,&nbsp;Dimitry M. Schepetov ,&nbsp;Brenna Green ,&nbsp;Maria V. Stanovova ,&nbsp;Tatiana I. Antokhina ,&nbsp;Terrence Gosliner ,&nbsp;Manuel Antonio E. Malaquias ,&nbsp;Ángel Valdés","doi":"10.1016/j.ympev.2024.108214","DOIUrl":"10.1016/j.ympev.2024.108214","url":null,"abstract":"<div><div>Nudibranch molluscs <em>Coryphella</em> are widely distributed and species-rich gastropod group lacking fossil record and displaying a complex distribution across both Southern and Northern hemispheres. In this paper we provide a detailed review of the morphology, ecology, and distribution of <em>Coryphella,</em> estimation of divergence times between species, an ancestral area reconstruction, and a population analysis of widely distributed trans-Arctic species <em>Coryphella verrucosa</em> to investigate the evolution, phylogeographic patterns and reconstruct possible historical routes of oceanic dispersal. The inclusion of a larger sample size and five molecular markers has revealed a complex evolutionary history of <em>Coryphella</em>, shaped by transgression, vicariance, and dietary shifts, and overall driven by the pervasive effect of glacial cycles. We also revealed the presence of additional cryptic diversity, which suggests that further sampling may produce additional species in this group of nudibranchs. Tree calibration indicates the genus <em>Coryphella</em> originates in the middle Miocene in the Pacific Ocean and the early divergence within this group also occurred in the Pacific, specifically in different regions of the North Pacific. The ancestral area reconstruction inferred five independent instances of transgression from the Pacific Ocean to the Atlantic via different migration routes, including the Panamanian seaway and the Bering Strait. Among them, we identified three cases of successful transition to the Arctic waters from the North Pacific via the Bering Strait, associated with interglacial conditions of middle Pleistocene. Consequently, Pleistocene glacial cycles likely prompted pulses of boreal faunal elements to disperse southwards followed by range disjunction and temporary isolation of distant populations and resulting in allopatric speciation. Evidence from the population structure of contemporary trans-Arctic species suggests an occurrence of independent recolonization pathways of Arctic waters from both southernly and northernly refugia after the Last Glacial Maximum.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108214"},"PeriodicalIF":3.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular phylogenetic and estimation of evolutionary divergence and biogeography of the family Schizoparmaceae and allied families (Diaporthales, Ascomycota) Schizoparmaceae 科及其相关科(Diaporthales, Ascomycota)的分子系统发育和进化分异及生物地理学估计。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-10-03 DOI: 10.1016/j.ympev.2024.108211
Taichang Mu , Yongsheng Lin , Huili Pu , Nemat O. Keyhani , Yuxiao Dang , Huajun Lv , Zhiying Zhao , Zhiang Heng , Ziyi Wu , Chengjie Xiong , Longbing Lin , Yuxi Chen , Hailan Su , Xiayu Guan , Junzhi Qiu
{"title":"Molecular phylogenetic and estimation of evolutionary divergence and biogeography of the family Schizoparmaceae and allied families (Diaporthales, Ascomycota)","authors":"Taichang Mu ,&nbsp;Yongsheng Lin ,&nbsp;Huili Pu ,&nbsp;Nemat O. Keyhani ,&nbsp;Yuxiao Dang ,&nbsp;Huajun Lv ,&nbsp;Zhiying Zhao ,&nbsp;Zhiang Heng ,&nbsp;Ziyi Wu ,&nbsp;Chengjie Xiong ,&nbsp;Longbing Lin ,&nbsp;Yuxi Chen ,&nbsp;Hailan Su ,&nbsp;Xiayu Guan ,&nbsp;Junzhi Qiu","doi":"10.1016/j.ympev.2024.108211","DOIUrl":"10.1016/j.ympev.2024.108211","url":null,"abstract":"<div><div>The Diaporthales includes 32 families, many of which are important plant pathogens, endophytes and saprobes, e.g., members of the families Pseudoplagiostomataceae, Pyrisporaceae and Schizoparmaceae. Nucleotide sequences derived from five genetic loci including: ITS, LSU, TEF1-α, TUB2 and RPB2 were used for Bayesian evolutionary analysis to determine divergence times and evolutionary relationships within the Schizoparmaceae. Molecular clock analyses revealed that the ancestor of Schizoparmaceae split during the Upper Cretaceous period approximately 75.7 Mya (95 % highest posterior density of 60.3–91.3 Mya). Reconstructing ancestral state in phylogenies (RASP) with using the Bayesian Binary Markov chain Monte Carlo (BBM) Method to reconstruct the historical biogeography for the family Schizoparmaceae indicated its most likely origin in Africa. Based on taxonomic and phylogenetic analyses, the Pseudoplagiostomataceae and Pyrisporaceae relationships were clarified and a total of four species described herein. For Pseudoplagiostomataceae, three new species and one known species that include, <em>Pseudoplagiostoma fafuense</em> sp. nov., <em>Ps. ilicis</em> sp. nov., <em>Ps. sanmingense</em> sp. nov. and <em>Ps. bambusae</em> are described and a key of Pseudoplagiostomataceae is provided. With respect to Pyrisporaceae, we considered <em>Pseudoplagiostoma castaneae</em> to be a synonym of <em>Pyrispora castaneae</em>. In addition, a new species of Schizoparmaceae, <em>Coniella fujianensis</em> sp. nov. is described and illustrated.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108211"},"PeriodicalIF":3.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic data support phylogenetic congruence and reveal genomic changes associated with the repeated evolution of annualism in aplocheiloid killifishes (Cyprinodontiformes) 转录组数据支持系统发育的一致性,并揭示了与鲤形目鳉鱼一年生反复进化相关的基因组变化。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-10-02 DOI: 10.1016/j.ympev.2024.108209
Andrew W. Thompson , Amanda C. Black , Yu Huang , Qiong Shi , Andrew I. Furness , Ingo Braasch , Federico G. Hoffmann , Guillermo Ortí
{"title":"Transcriptomic data support phylogenetic congruence and reveal genomic changes associated with the repeated evolution of annualism in aplocheiloid killifishes (Cyprinodontiformes)","authors":"Andrew W. Thompson ,&nbsp;Amanda C. Black ,&nbsp;Yu Huang ,&nbsp;Qiong Shi ,&nbsp;Andrew I. Furness ,&nbsp;Ingo Braasch ,&nbsp;Federico G. Hoffmann ,&nbsp;Guillermo Ortí","doi":"10.1016/j.ympev.2024.108209","DOIUrl":"10.1016/j.ympev.2024.108209","url":null,"abstract":"<div><div>Repeated evolution of novel life histories that are correlated with ecological variables offers opportunities to study convergence in genetic, developmental, and metabolic features. Nearly half of the 800 species of Aplocheiloid killifishes, a clade of teleost fishes with a circumtropical distribution, are “annual” or seasonal species that survive in ephemeral bodies of water that desiccate and are unfeasible for growth, reproduction, or survival for weeks to months every year. But the repeated evolution of adaptations that are key features of the annual life history among these fishes remains poorly known without a robust phylogenetic framework. We present a large-scale phylogenomic reconstruction of aplocheiloid killifishes evolution using newly sequenced transcriptomes obtained from a diversity of killifish lineages representing putative independent origins of annualism. Ancestral state estimation shows that developmental dormancy (diapause), a key trait of the killifish annual life cycle, may have originated up to seven times independently among African and South American lineages. To further explore the genetic basis of this unique trait, we measure changes in evolutionary rates among orthologous genes across the killifish tree of life by quantifying codon evolution using d<em>N</em>/d<em>S</em> ratios. We show that some genes have higher d<em>N</em>/d<em>S</em> ratios in lineages leading to species with annual life history. Many of them constitute key developmental genes or nuclear-encoded metabolic genes that control oxidative phosphorylation. Lastly, we compare these genes with higher ω to genes previously associated to developmental dormancy and metabolic shifts in killifishes and other vertebrates, and thereby identify molecular evolutionary signatures of repeated transitions to extreme environments.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108209"},"PeriodicalIF":3.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Museomics reveal origins of East African Pleophylla forest chafers and Miocene forest connectivity Museomics揭示了东非Pleophylla森林糠虾的起源和中新世森林的连通性。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-10-02 DOI: 10.1016/j.ympev.2024.108210
Lars Dietz , Sandra Kukowka , Jonas Eberle , Christoph Mayer , Oliver Niehuis , Lars Podsiadlowski , Dirk Ahrens
{"title":"Museomics reveal origins of East African Pleophylla forest chafers and Miocene forest connectivity","authors":"Lars Dietz ,&nbsp;Sandra Kukowka ,&nbsp;Jonas Eberle ,&nbsp;Christoph Mayer ,&nbsp;Oliver Niehuis ,&nbsp;Lars Podsiadlowski ,&nbsp;Dirk Ahrens","doi":"10.1016/j.ympev.2024.108210","DOIUrl":"10.1016/j.ympev.2024.108210","url":null,"abstract":"<div><div>Here we present a nearly complete species-level phylogeny including 23 of the 25 known species of the forest-dwelling herbivorous scarab chafer beetle genus <em>Pleophylla</em> (Coleoptera: Scarabaeidae: Sericinae), based on the analysis of 950 nuclear genes (metazoan-level universal single-copy orthologs; mzl-USCOs). DNA sequences were obtained from freshly collected, ethanol-preserved samples and from dried museum specimens by target enrichment or genome shotgun sequencing. Alignment completeness of mzl-USCOs newly obtained here by target DNA enrichment of ethanol samples were very heterogenous and lower (29–62 %) than in Dietz et al. (2023a), while that of sequences recovered from dried samples was even lower (∼19 %). Alignment completeness of the sequences obtained from low coverage shotgun sequencing was highest (∼92 %), although the average coverage was much lower than for the target enrichment samples. We used the resulting phylogeny to reconstruct the historical biogeography of the group. To estimate a time-calibrated tree, we combined the mzl-USCO data of <em>Pleophylla</em> with a nucleotide alignment from an available transcriptomic dataset of Scarabaeoidea and used two different sets of secondary calibration points. Despite the problems associated with the capture rate of mzl-USCO sequences from museum specimens, we were able to infer a well-resolved phylogeny of the genus <em>Pleophylla</em> that also provided reliable estimates of the phylogenetic position of species for which we had little sequence data. Our study clearly identified South Africa as the geographic origin of <em>Pleophylla</em>. Timing and biogeographic history confirm a persistent fragmentation of forests since the Eocene. The occurrence of only one long-distance dispersal event from southern Africa to the Eastern African Arc even during the Miocene highlights the limited dispersal possibilities for these forest-adapted chafers, which do not seem to have had important northerly range expansions along hypothetical forest corridors during the Pleistocene.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108210"},"PeriodicalIF":3.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogeny and evolution of dissimilatory sulfite reduction in prokaryotes 原核生物中异氨亚硫酸盐还原的系统发育和进化。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-09-27 DOI: 10.1016/j.ympev.2024.108208
Yuxin Tao , Zichao Zeng , Yuhui Deng , Menghan Zhang , Fengping Wang , Yinzhao Wang
{"title":"Phylogeny and evolution of dissimilatory sulfite reduction in prokaryotes","authors":"Yuxin Tao ,&nbsp;Zichao Zeng ,&nbsp;Yuhui Deng ,&nbsp;Menghan Zhang ,&nbsp;Fengping Wang ,&nbsp;Yinzhao Wang","doi":"10.1016/j.ympev.2024.108208","DOIUrl":"10.1016/j.ympev.2024.108208","url":null,"abstract":"<div><div>Sulfate is the second most common nonmetallic ion in modern oceans, as its concentration dramatically increased alongside tectonic activity and atmospheric oxidation in the Proterozoic. Microbial sulfate/sulfite metabolism, involving organic carbon or hydrogen oxidation, is linked to sulfur and carbon biogeochemical cycles. However, the coevolution of microbial sulfate/sulfite metabolism and Earth’s history remains unclear. Here, we conducted a comprehensive phylogenetic analysis to explore the evolutionary history of the dissimilatory sulfite reduction (Dsr) pathway. The phylogenies of the Dsr-related genes presented similar branching patterns but also some incongruencies, indicating the complex origin and evolution of Dsr. Among these genes, <em>dsrAB</em> is the hallmark of sulfur-metabolizing prokaryotes. Our detailed analyses suggested that the evolution of <em>dsrAB</em> was shaped by vertical inheritance and multiple horizontal gene transfer events and that selection pressure varied across distinct lineages. Dated phylogenetic trees indicated that key evolutionary events of dissimilatory sulfur-metabolizing prokaryotes were related to the Great Oxygenation Event (2.4–2.0 Ga) and several geological events in the “Boring Billion” (1.8–0.8 Ga), including the fragmentation of the Columbia supercontinent (approximately 1.6 Ga), the rapid increase in marine sulfate (1.3–1.2 Ga), and the Neoproterozoic glaciation event (approximately 1.0 Ga). We also proposed that the voluminous iron formations (approximately 1.88 Ga) might have induced the metabolic innovation of iron reduction. In summary, our study provides new insights into Dsr evolution and a systematic view of the coevolution of dissimilatory sulfur-metabolizing prokaryotes and the Earth’s environment.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108208"},"PeriodicalIF":3.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disentangling conflicting molecular phylogenetic signals in nuclear and plastid DNA of the western Eurasian-Mediterranean grass genus Cynosurus and its relatives (Poaceae subtribes Cynosurinae and Parapholiinae) 厘清欧亚-地中海西部禾本科草属(Cynosurus)及其近缘种(Poaceae 亚种 Cynosurinae 和 Parapholiinae)核DNA 和质粒 DNA 中相互矛盾的分子系统发育信号。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-09-26 DOI: 10.1016/j.ympev.2024.108204
Natalia Tkach , Sirus Leonard Rasti , Martin Röser
{"title":"Disentangling conflicting molecular phylogenetic signals in nuclear and plastid DNA of the western Eurasian-Mediterranean grass genus Cynosurus and its relatives (Poaceae subtribes Cynosurinae and Parapholiinae)","authors":"Natalia Tkach ,&nbsp;Sirus Leonard Rasti ,&nbsp;Martin Röser","doi":"10.1016/j.ympev.2024.108204","DOIUrl":"10.1016/j.ympev.2024.108204","url":null,"abstract":"<div><div>The western Eurasian-Mediterranean grass genus <em>Cynosurus</em>, comprising about 11 species, is morphologically well delimited by the regular occurrence of conspicuous sterile spikelets distal to the fertile ones on the outer, abaxial side of the inflorescences. However, our molecular phylogenetic study using nuclear ribosomal DNA (ITS, ETS) and plastid DNA sequences (<em>trnL–F</em>, <em>matK</em>) has shown that the genus is not monophyletic in its current delimitation, but consists of three distinct lineages. These lineages were found to be closely related to a group of 6–7 genera taxonomically assigned to the subtribe Parapholiinae. These Parapholiinae genera were consistently monophyletic in our analyses, but the suggested relationships to the three lineages of <em>Cynosurus</em> varied depending on the particular DNA region examined. This was the case for both plastid and nuclear DNA, with cytonuclear discordance and ‘chloroplast capture’ indicating earlier hybridization. Interestingly, hybridization also proved to be the most likely explanation even with regard to the 18S–26S cistrons of the nuclear ribosomal DNA, where an exceptional evolutionary divergence between ITS and ETS was found. The results highlight and illustrate the important role of hybridization in the evolution of grasses. In terms of taxonomy, our findings argue against maintaining a polyphyletic genus <em>Cynosurus s.l.</em> but instead argue for dividing it into three monophyletic genera: <em>Cynosurus s.s.</em>, <em>Falona</em>, which is reestablished here, and <em>Ciliochloa</em>, which is described as a new genus. In addition, it is proposed that the two subtribes Cynosurinae and Parapholiinae be combined into a single subtribe Cynosurinae, which is also monophyletic. The possible genetic background of the formation of sterile spikelets and the occasional occurrence of inflorescences with consistently fertile spikelets are discussed. New combinations are <em>Ciliochloa effusa</em>, <em>C. effusa</em> var. <em>obliquata</em>, <em>C. effusa</em> var. <em>fertilis</em>, <em>C. elegans, C. gracilis, C. turcomanica</em> and <em>Falona colorata</em>.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108204"},"PeriodicalIF":3.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Historical biogeography and the evolution of habitat preference in the North American camel spider family, Eremobatidae (Arachnida:Solifugae) 北美骆驼蜘蛛科 Eremobatidae(蛛形纲: Solifugae)的历史生物地理学和栖息地偏好进化。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-09-19 DOI: 10.1016/j.ympev.2024.108193
Erika L. Garcia , Paula E. Cushing
{"title":"Historical biogeography and the evolution of habitat preference in the North American camel spider family, Eremobatidae (Arachnida:Solifugae)","authors":"Erika L. Garcia ,&nbsp;Paula E. Cushing","doi":"10.1016/j.ympev.2024.108193","DOIUrl":"10.1016/j.ympev.2024.108193","url":null,"abstract":"<div><div>Abiotic variables can influence species distributions, often restricting taxa to an acquired climatic signature or conversely, related species are conserved in the same ecological space over millions of years. An investigation into how abiotic change has shaped geographic distributions of taxa may be key to understanding diversification of lineages, and in the absence of reliable morphological characteristics, such information may support taxonomic units at multiple scales.</div><div>Here, we examine the historical biogeography and patterns of habitat preference within the North American solifuge family, Eremobatidae. A previous study demonstrated that a major taxonomic revision of Eremobatidae is warranted, however recent studies demonstrate high levels of morphological convergence within the group, thus a re-classification of generic boundaries using additional information must be prioritized before we can formally begin solid revisionary efforts. In this study, we aimed to reconstruct a well-resolved phylogenetic hypothesis of Eremobatidae by filtering UCE loci based on informativeness, by mitigating the effect of cogenic UCE on phylogenetic estimation, and by supplementing our curated UCE loci with mitochondrial information. Using our preferred topology, in conjunction with published estimated divergence dates for Eremobatidae, we inferred a time-calibrated phylogenetic hypothesis to inform the historical biogeography and patterns of habitat preference. The two major habitat types that were observed for Eremobatidae were warm deserts for early diverging taxa and a subsequent evolution to cold deserts and Mediterranean California ecoregions for later diverging taxa. Eremobatid niche space, determined by temperature and precipitation, has been conserved for at least 25 million years in North America, supporting a warm desert origin, and thus supporting high species richness in the Sonoran and Mexican Plateau. Overall, our study provides support for new generic level designations within Eremobatidae.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108193"},"PeriodicalIF":3.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The small and inconspicuous majority: Revealing the megadiversity and historical biogeography of the Pristimantis unistrigatus species group (Anura, Strabomantidae) 小而不起眼的大多数:揭示 Pristimantis unistrigatus 物种群(无脊椎动物门,Strabomantidae)的巨型多样性和历史生物地理学。
IF 3.6 1区 生物学
Molecular Phylogenetics and Evolution Pub Date : 2024-09-19 DOI: 10.1016/j.ympev.2024.108203
Alexander Tamanini Mônico , Esteban Diego Koch , Miquéias Ferrão , Igor Yuri Fernandes , Giselle Moura Guimarães Marques , Juan Carlos Chaparro , Miguel Trefaut Rodrigues , Albertina Pimentel Lima , Antoine Fouquet
{"title":"The small and inconspicuous majority: Revealing the megadiversity and historical biogeography of the Pristimantis unistrigatus species group (Anura, Strabomantidae)","authors":"Alexander Tamanini Mônico ,&nbsp;Esteban Diego Koch ,&nbsp;Miquéias Ferrão ,&nbsp;Igor Yuri Fernandes ,&nbsp;Giselle Moura Guimarães Marques ,&nbsp;Juan Carlos Chaparro ,&nbsp;Miguel Trefaut Rodrigues ,&nbsp;Albertina Pimentel Lima ,&nbsp;Antoine Fouquet","doi":"10.1016/j.ympev.2024.108203","DOIUrl":"10.1016/j.ympev.2024.108203","url":null,"abstract":"<div><div>With more than 600 recognized species, the genus <em>Pristimantis</em> is already the most diverse among vertebrates, but described species only represent a fraction of the actual diversity in this clade. This genus is widely distributed throughout the Neotropics and represents an interesting model for biogeographic studies because <em>Pristimantis</em> spp. are direct developing and generally have narrow ecological niches and low dispersal abilities. The <em>P. unistrigatus</em> species group is one of the most important components in the genus (ca. 200 recognized species) and has been supported by morphological but not by molecular evidence. We assessed the species boundaries and distribution in the <em>P. unistrigatus</em> species group and infer spatiotemporal patterns of diversification related to historical landscape changes in the Neotropics. We gathered three mitochondrial, and two nuclear DNA loci from 416 specimens throughout the range of the group, and including 68 nominal species. We redefine the group based on the obtained phylogeny and found 151 candidate species that composes it, with 83 of these remaining undescribed. We recovered 11 major clades within the group that diverged before 13 Ma. The diversification of the group started during the early Miocene most likely in northwestern South America, currently corresponding to western Amazonia and northern Andes. The other neotropical areas subsequently acted as sinks, receiving lineages mostly during the last 10 Ma, after the demise of the Pebas System and the setup of the modern Amazonian hydrographic system.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108203"},"PeriodicalIF":3.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信