Anton Stabentheiner, Teresa Mauerhofer, Regina Willfurth, Helmut Kovac, Edith Stabentheiner, Helmut Käfer, Iacopo Petrocelli
{"title":"The costs of overwintering in paper wasps (Polistes dominula and Polistes gallicus): the use of energy stores.","authors":"Anton Stabentheiner, Teresa Mauerhofer, Regina Willfurth, Helmut Kovac, Edith Stabentheiner, Helmut Käfer, Iacopo Petrocelli","doi":"10.1007/s00360-024-01540-w","DOIUrl":"10.1007/s00360-024-01540-w","url":null,"abstract":"<p><p>Overwintering insects are facing energetic challenges because of food shortage, low temperature, and desiccation stress. Paper wasps of the genus Polistes overwinter as mated adults (gynes) in hibernacula protecting them from predation, snow, and rain but barely from low environmental temperature. In different climates, they face differing overwintering temperature regimes, and therefore they may differ in their energy use. We investigated how much of energy resources built up until autumn is used during diapause dormancy in natural hibernacula by measuring lipid, glycogen, and free carbohydrate content in autumn and early spring in Polistes dominula from temperate European (Austrian) and warm Mediterranean (Italian) climate and Polistes gallicus from Mediterranean climate. Winter energy consumption amounted to ~ 339 and ~ 310 J per wasp in the Austrian and Italian Polistes dominula populations. The smaller Italian Polistes gallicus consumed ~ 247 J. This amounts to 2.62, 2.35, and 1.79 J per day. Of this, the energy demand was mainly fuelled by lipids (84%, 93%, and 90%, respectively), but glycogen stores contributed also considerably (16%, 6%, and 9%). Free carbohydrates decreased only by 0.7%, 1%, and 0.8%. While fat stores seem still sufficient in spring, the wasps depleted most of their carbohydrates. The energy reserves of 396, 400, and 147 J per wasp remaining in spring in the three populations seem sufficient to fuel rest or simple brood care activities for a whole summer but restrict foraging flights to a few hours (~ 3.5-6 h). Results suggest that energy supply might become challenging in expected future climate scenarios.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"131-144"},"PeriodicalIF":1.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte Nelson, Emily M Standen, Peter J Allen, Colin J Brauner
{"title":"An investigation of gill and blood carbonic anhydrase characteristics in three basal actinopterygian species: alligator gar (Atractosteus spatula), white sturgeon (Acipenser transmontanus) and Senegal bichir (Polypterus senegalus).","authors":"Charlotte Nelson, Emily M Standen, Peter J Allen, Colin J Brauner","doi":"10.1007/s00360-024-01539-3","DOIUrl":"10.1007/s00360-024-01539-3","url":null,"abstract":"<p><p>Many teleosts possess a unique set of respiratory characteristics allowing enhanced oxygen unloading to the tissues during stress. This system comprises three major components: highly pH sensitive haemoglobins (large Bohr and Root effects), rapid red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of membrane-bound plasma-accessible carbonic anhydrase (paCA; absence in the gills). The first two components have received considerable research effort; however, the evolutionary loss of branchial paCA has received little attention. In the current study, we investigated the availability of branchial membrane-bound CA, along with several other CA-related characteristics in species belonging to three basal actinopterygian groups: the Lepisosteiformes, Acipenseriformes and Polypteriformes to assess the earlier hypothesis that Root effect haemoglobins constrain branchial paCA availability. We present the first evidence suggesting branchial membrane-bound CA presence in a basal actinopterygian species: the Senegal bichir (Polypterus senegalus) and show that like the teleosts, white sturgeon (Acipenser transmontanus) and alligator gar (Atractosteus spatula) do not possess branchial membrane-bound CA. We discuss the varying respiratory strategies for these species and propose that branchial paCA may have been lost much earlier than previously thought, likely in relation to the changes in haemoglobin buffer capacity associated with the increasing magnitude of the Bohr effect. The findings described here represent an important advancement in our understanding of the evolution of the unique system of enhanced oxygen unloading thought to be present in most teleosts, a group that encompasses half of all vertebrates.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"155-166"},"PeriodicalIF":2.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alyssa M Weinrauch, Zachary J Dumar, Sienna L Overduin, Greg G Goss, Sally P Leys, Tamzin A Blewett
{"title":"Evidence for transporter-mediated uptake of environmental L-glutamate in a freshwater sponge, Ephydatia muelleri.","authors":"Alyssa M Weinrauch, Zachary J Dumar, Sienna L Overduin, Greg G Goss, Sally P Leys, Tamzin A Blewett","doi":"10.1007/s00360-024-01544-6","DOIUrl":"10.1007/s00360-024-01544-6","url":null,"abstract":"<p><p>The freshwater sponge, Ephydatia muelleri, lacks a nervous or endocrine system and yet it exhibits a coordinated whole-body action known as a \"sneeze\" that can be triggered by exposure to L-glutamate. It is not known how L-glutamate is obtained by E. muelleri in sufficient quantities (i.e., 70 µM) to mediate this response endogenously. The present study tested the hypothesis that L-glutamate can be directly acquired from the environment across the body surface of E. muelleri. We demonstrate carrier mediated uptake of two distinct saturable systems with maximal transport rates (J<sub>max</sub>) of 64.27 ± 4.98 and 25.12 ± 1.87 pmols mg<sup>-1</sup> min<sup>-1</sup>, respectively. The latter system has a higher calculated substrate affinity (K<sub>m</sub>) of 2.87 ± 0.38 µM compared to the former (8.75 ± 1.00 µM), indicative of distinct systems that can acquire L-glutamate at variable environmental concentrations. Further characterization revealed potential shared pathways of L-glutamate uptake with other negatively charged amino acids, namely D-glutamate and L-aspartate, as well as the neutral amino acid L-alanine. We demonstrate that L-glutamate uptake does not appear to rely on exogenous sodium or proton concentrations as removal of these ions from the bathing media did not significantly alter uptake. Likewise, L-glutamate uptake does not seem to rely on internal proton motive forces driven by VHA as application of 100 nM of the VHA inhibitor bafilomycin did not alter uptake rates within E. muelleri tissues. Whether the acquired amino acid is used to supplement feeding or is stored and accumulated to mediate the sneeze response remains to be determined.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"121-130"},"PeriodicalIF":2.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasticity changes in iron homeostasis in hibernating Daurian ground squirrels (Spermophilus dauricus) may counteract chronically inactive skeletal muscle atrophy.","authors":"Yong Kong, Rongrong Yin, Yue He, Fangyang Pan, Huajian Yang, Huiping Wang, Jie Zhang, Yunfang Gao","doi":"10.1007/s00360-024-01543-7","DOIUrl":"10.1007/s00360-024-01543-7","url":null,"abstract":"<p><p>Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (- 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, - 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, - 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, - 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"191-202"},"PeriodicalIF":2.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hypoxic and hypercapnic burrow conditions lead to downregulation of free triiodothyronine and hematocrit in Ansell's mole-rats (Fukomys anselli).","authors":"Yoshiyuki Henning, Kamilla Adam, Patricia Gerhardt, Sabine Begall","doi":"10.1007/s00360-023-01526-0","DOIUrl":"10.1007/s00360-023-01526-0","url":null,"abstract":"<p><p>African mole-rats live in self-dug burrow systems under hypoxic and hypercapnic conditions. Adaptations to hypoxia include suppression of resting metabolic rate (RMR) and core body temperature (T<sub>b</sub>). Because the thyroid hormones (THs) thyroxine (T4) and triiodothyronine (T3) are positive regulators of RMR and T<sub>b</sub>, we hypothesized that serum TH concentrations would also be downregulated under hypoxic conditions. To test this hypothesis, we kept Ansell's mole-rats (Fukomys anselli) in terraria filled with soil in which they were allowed to construct underground burrows to achieve chronic intermittent hypoxia and hypercapnia. The animals stayed in these hypoxic and hypercapnic burrows voluntarily, although given the choice to stay aboveground. We collected blood samples before and after treatment to measure serum T4 and T3 concentrations as well as hematological parameters. The free fraction of the transcriptionally-active T3 was significantly decreased after treatment, indicating that cellular TH signaling was downregulated via peripheral mechanisms, consistent with the assumption that aerobic metabolism is downregulated under hypoxic conditions. Furthermore, we found that hematocrit and hemoglobin concentrations were also downregulated after treatment, suggesting that oxygen demand decreases under hypoxia, presumably due to the metabolic shift towards anaerobic metabolism. Taken together, we have identified a potential upstream regulator of physiological adaptations to hypoxia in these highly hypoxia-tolerant animals.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"33-40"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional interactions between coat structure and colour in the determination of solar heat load on arid living kangaroos in summer: balancing crypsis and thermoregulation.","authors":"Terence J Dawson, Shane K Maloney","doi":"10.1007/s00360-024-01534-8","DOIUrl":"10.1007/s00360-024-01534-8","url":null,"abstract":"<p><p>Interactions of solar radiation with mammal fur are complex. Reflection of radiation in the visible spectrum provides colour that has various roles, including sexual display and crypsis, i.e., camouflage. Radiation that is absorbed by a fur coat is converted to heat, a proportion of which impacts on the skin. Not all absorption occurs at the coat surface, and some radiation penetrates the coat before being absorbed, particularly in lighter coats. In studies on this phenomenon in kangaroos, we found that two arid zone species with the thinnest coats had similar effective heat load, despite markedly different solar reflectances. These kangaroos were Red Kangaroos (Osphranter rufus) and Western Grey Kangaroos (Macropus fuliginosus).Here we examine the connections between heat flow patterns associated with solar radiation, and the physical structure of these coats. Also noted are the impacts of changing wind speed. The modulation of solar radiation and resultant heat flows in these coats were measured at wind speeds from 1 to 10 m s<sup>-1</sup> by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum like solar radiation was used as a proxy for the sun. The integrated reflectance across the solar spectrum was higher in the red kangaroos (40 ± 2%) than in the grey kangaroos (28 ± 1%). Fur depth and insulation were not different between the two species, but differences occurred in fibre structure, notably in fibre length, fibre density and fibre shape. Patterns of heat flux within the species' coats occurred despite no overall difference in effective solar heat load. We consider that an overarching need for crypsis, particularly for the more open desert-adapted red kangaroo, has led to the complex adaptations that retard the penetrance of solar radiation into its more reflective fur.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"53-64"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139713421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression patterns of heat-shock genes during stopover and the trade-off between refueling and stress response in a passerine migrant.","authors":"Anastasios Bounas, Chrysoula Komini, Elisavet-Aspasia Toli, Artemis Talioura, Konstantinos Sotiropoulos, Christos Barboutis","doi":"10.1007/s00360-023-01529-x","DOIUrl":"10.1007/s00360-023-01529-x","url":null,"abstract":"<p><p>Migrating birds are often exposed to variable environments and face a multitude of stress exposures along their long-distance flights. During stopover refueling, migratory birds must balance the need to accumulate energy reserves to continue their migration with the need to respond to environmental and physiological stressors. We examined the gene expression patterns of different Heat Shock Proteins (HSPs) in migrating birds during stopover at different body condition states (lean vs. fat), to provide some first insights on the role of HSPs in bird migration and explore the concept of a trade-off between refueling and stress response. Our results showed upregulation of HSP expression at release that could be associated with muscle growth and increased cholesterol and lipid synthesis needed for birds to fuel their upcoming migration. On the other hand, during capture, upregulation of HSP5 could be attributed to physiological recovery from the non-stop endurance flight when crossing the Sahara Desert-Mediterranean Sea ecological barrier. All birds significantly increased their fuel loads up to 48% of lean body mass and we provide evidence for muscle rebuilding during stopover as flight muscle mass increased by 10%, highlighting the fact that stopover sites can play a major role in the physiological recovery of migrants.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"1-6"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activation of oxytocinergic neurons enhances torpor in mice.","authors":"Maia T Hare, Matthew E Carter, Steven J Swoap","doi":"10.1007/s00360-023-01528-y","DOIUrl":"10.1007/s00360-023-01528-y","url":null,"abstract":"<p><p>Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body temperature and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"95-104"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jishnu K S Krishnan, Sarah Rice, Monica Mikes, M Hoshi Sugiura, Kelly L Drew, Zeinab Barati, S Ryan Oliver
{"title":"Pre-hibernation diet alters skeletal muscle relaxation kinetics, but not force development in torpid arctic ground squirrels.","authors":"Jishnu K S Krishnan, Sarah Rice, Monica Mikes, M Hoshi Sugiura, Kelly L Drew, Zeinab Barati, S Ryan Oliver","doi":"10.1007/s00360-023-01527-z","DOIUrl":"10.1007/s00360-023-01527-z","url":null,"abstract":"<p><p>During the hibernation season, Arctic ground squirrels (AGS) experience extreme temperature fluctuations (body temperature, T<sub>b</sub>, as low as - 3 °C), during which they are mostly physically inactive. Once T<sub>b</sub> reaches ~ 15 °C during interbout arousals, hibernators recruit skeletal muscle (SkM) for shivering thermogenesis to reach T<sub>b</sub> of ~ 35 °C. Polyunsaturated fatty acids (PUFA) in the diet are known to influence SkM function and metabolism. Recent studies in the cardiac muscle of hibernators have revealed that increased levels of ω-6 and the ω-6:ω-3 PUFA ratio correlate with sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and hibernation status. We hypothesized that diet (increased ω-6:ω-3 PUFA ratio) and torpor status are important in the regulation of the SERCA pump and that this may improve SkM performance during hibernation. Ex vivo functional assays were used to characterize performance changes in SkM (diaphragm) from AGS fed the following diets. (1) Standard rodent chow with an ω-6:ω-3 ratio of 5:1, or (2) a balanced diet with an ω-6:ω-3 ratio of 1:1 that roughly mimics wild diet. We collected diaphragms at three different stages of hibernation (early torpor, late torpor, and arousal) and evaluated muscle function under hypothermic temperature stress at 4 °C, 15 °C, 25 °C, and 37 °C to determine functional resilience. Our data show that torpid animals fed standard rodent chow have faster SkM relaxation when compared to the balanced diet animals. Furthermore, we discovered that standard rodent chow AGS during torpor has higher SkM relaxation kinetics, but this effect of torpor is eliminated in balanced diet AGS. Interestingly, neither diet nor torpor influenced the rate of force development (rate of calcium release). This is the first study to show that increasing the dietary ω-6:ω-3 PUFA ratio improves skeletal muscle performance during decreased temperatures in a hibernating animal. This evidence supports the interpretation that diet can change some functional properties of the SkM, presumably through membrane lipid composition, ambient temperature, and torpor interaction, with an impact on SkM performance.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"65-79"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the significance of aspartate aminotransferase and creatine kinase in wild reptile health studies.","authors":"Randall Arguedas","doi":"10.1007/s00360-024-01535-7","DOIUrl":"10.1007/s00360-024-01535-7","url":null,"abstract":"<p><p>In reptile medicine, the enzymes aspartate aminotransferase (AST) and creatine kinase (CK) have been used in clinical diagnostics, where CK is considered an enzyme specific to muscle cell damage, while AST is a nonspecific enzyme that is mainly produced in the liver and muscle. When many native reptiles are sampled, it is evident that there are important differences between species and individuals belonging to the same species, making the AST and CK ranges very wide. The minimum and maximum values, variations and standard deviations were extracted for each enzyme from 17 wild reptile studies, revealing high variation and a wide range of variation for each species. AST and CK must be interpreted with caution in wild reptiles since there appears to be an important amount of individual and specific variation due to the muscular origin of these enzymes, and such variations tell us that there are considerable differences between individuals, physiological characteristics or sampling methods; thus, there is no apparent value derived from these kinds of studies on the utility of AST for evaluating liver damage, but the measurement of AST and CK can be useful for reptile health assessments or any manipulative study since they can eventually be used as indicators or potential biomarkers for restraint techniques or holding time.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"47-51"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}