Gonzalo Tomás, Ana Marandino, Yanina Panzera, Sirley Rodríguez, Gabriel Luz Wallau, Filipe Zimmer Dezordi, Ramiro Pérez, Lucía Bassetti, Raúl Negro, Joaquín Williman, Valeria Uriarte, Fabiana Grazioli, Carmen Leizagoyen, Sabrina Riverón, Jaime Coronel, Soledad Bello, Enrique Páez, Martín Lima, Virginia Méndez, Ruben Pérez
{"title":"Highly pathogenic avian influenza H5N1 virus infections in pinnipeds and seabirds in Uruguay: implications for bird-mammal transmission in South America","authors":"Gonzalo Tomás, Ana Marandino, Yanina Panzera, Sirley Rodríguez, Gabriel Luz Wallau, Filipe Zimmer Dezordi, Ramiro Pérez, Lucía Bassetti, Raúl Negro, Joaquín Williman, Valeria Uriarte, Fabiana Grazioli, Carmen Leizagoyen, Sabrina Riverón, Jaime Coronel, Soledad Bello, Enrique Páez, Martín Lima, Virginia Méndez, Ruben Pérez","doi":"10.1093/ve/veae031","DOIUrl":"https://doi.org/10.1093/ve/veae031","url":null,"abstract":"The highly pathogenic avian influenza viruses of the clade 2.3.4.4b have caused unprecedented deaths in South American wild birds, poultry, and marine mammals. In September 2023, pinnipeds and seabirds appeared dead on the Uruguayan Atlantic coast. Sixteen influenza virus strains were characterized by real-time reverse transcription PCR and genome sequencing in samples from sea lions (Otaria flavescens), fur seals (Arctocephalus australis), and terns (Sterna hirundinacea). Phylogenetic and ancestral reconstruction analysis showed that these strains have pinnipeds as the most likely ancestral host, representing a recent introduction of the clade 2.3.4.4b in Uruguay. The Uruguayan and closely related strains from Peru (sea lions) and Chile (sea lions and a human case) carry mammalian adaptative residues 591K and 701N in the viral polymerase basic protein 2 (PB2). Our findings suggest that the clade 2.3.4.4b strains in South America may have spread from mammals to mammals and seabirds, revealing a new transmission route.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"63 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Fusaro, Bianca Zecchin, Edoardo Giussani, Elisa Palumbo, Montserrat Agüero-García, Claudia Bachofen, Ádám Bálint, Fereshteh Banihashem, Ashley C Banyard, Nancy Beerens, Manon Bourg, Francois-Xavier Briand, Caroline Bröjer, Ian H Brown, Brigitte Brugger, Alexander M P Byrne, Armend Cana, Vasiliki Christodoulou, Zuzana Dirbakova, Teresa Fagulha, Ron A M Fouchier, Laura Garza-Cuartero, George Georgiades, Britt Gjerset, Beatrice Grasland, Oxana Groza, Timm Harder, Ana Margarida Henriques, Charlotte Kristiane Hjulsager, Emiliya Ivanova, Zygimantas Janeliunas, Laura Krivko, Ken Lemon, Yuan Liang, Aldin Lika, Péter Malik, Michael J McMenamy, Alexander Nagy, Imbi Nurmoja, Iuliana Onita, Anne Pohlmann, Sandra Revilla-Fernández, Azucena Sánchez-Sánchez, Vladimir Savic, Brigita Slavec, Krzysztof Smietanka, Chantal J Snoeck, Mieke Steensels, Vilhjálmur Svansson, Edyta Swieton, Niina Tammiranta, Martin Tinak, Steven Van Borm, Siamak Zohari, Cornelia Adlhoch, Francesca Baldinelli, Calogero Terregino, Isabella Monne
{"title":"High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe – why trends of virus evolution are more difficult to predict","authors":"Alice Fusaro, Bianca Zecchin, Edoardo Giussani, Elisa Palumbo, Montserrat Agüero-García, Claudia Bachofen, Ádám Bálint, Fereshteh Banihashem, Ashley C Banyard, Nancy Beerens, Manon Bourg, Francois-Xavier Briand, Caroline Bröjer, Ian H Brown, Brigitte Brugger, Alexander M P Byrne, Armend Cana, Vasiliki Christodoulou, Zuzana Dirbakova, Teresa Fagulha, Ron A M Fouchier, Laura Garza-Cuartero, George Georgiades, Britt Gjerset, Beatrice Grasland, Oxana Groza, Timm Harder, Ana Margarida Henriques, Charlotte Kristiane Hjulsager, Emiliya Ivanova, Zygimantas Janeliunas, Laura Krivko, Ken Lemon, Yuan Liang, Aldin Lika, Péter Malik, Michael J McMenamy, Alexander Nagy, Imbi Nurmoja, Iuliana Onita, Anne Pohlmann, Sandra Revilla-Fernández, Azucena Sánchez-Sánchez, Vladimir Savic, Brigita Slavec, Krzysztof Smietanka, Chantal J Snoeck, Mieke Steensels, Vilhjálmur Svansson, Edyta Swieton, Niina Tammiranta, Martin Tinak, Steven Van Borm, Siamak Zohari, Cornelia Adlhoch, Francesca Baldinelli, Calogero Terregino, Isabella Monne","doi":"10.1093/ve/veae027","DOIUrl":"https://doi.org/10.1093/ve/veae027","url":null,"abstract":"Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"48 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dylan H Westfall, Wenjie Deng, Alec Pankow, Lennie Chen, Hong Zhao, Carolyn Williamson, Morgane Rolland, Ben Murrell, James I Mullins
{"title":"Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations—Application to HIV-1 quasispecies","authors":"Dylan H Westfall, Wenjie Deng, Alec Pankow, Lennie Chen, Hong Zhao, Carolyn Williamson, Morgane Rolland, Ben Murrell, James I Mullins","doi":"10.1093/ve/veae019","DOIUrl":"https://doi.org/10.1093/ve/veae019","url":null,"abstract":"Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing, which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence polymerase-chain reaction (PCR) amplicons derived from cDNA templates tagged with unique molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR. The use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Production of highly accurate sequences from the large datasets produced from SMRT-UMI sequencing is facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline). PORPIDpipeline automatically filters and parses circular consensus reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination, heteroduplex formation, or early cycle PCR errors. The optimized SMRT-UMI sequencing and PORPIDpipeline methods presented here represent a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus quasispecies in a virus transmitter-recipient pair of individuals.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"121 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus EvolutionPub Date : 2024-04-03eCollection Date: 2024-01-01DOI: 10.1093/ve/veae028
Joan Roughgarden
{"title":"Lytic/Lysogenic Transition as a Life-History Switch.","authors":"Joan Roughgarden","doi":"10.1093/ve/veae028","DOIUrl":"https://doi.org/10.1093/ve/veae028","url":null,"abstract":"<p><p>The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae028"},"PeriodicalIF":5.3,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus EvolutionPub Date : 2024-03-26eCollection Date: 2024-01-01DOI: 10.1093/ve/veae026
{"title":"Correction to: Fitness effects of mutations to SARS-CoV-2 proteins.","authors":"","doi":"10.1093/ve/veae026","DOIUrl":"https://doi.org/10.1093/ve/veae026","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/ve/vead055.].</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae026"},"PeriodicalIF":5.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oumaima Moubset, Denis Filloux, Hugo Fontes, Charlotte Julian, Emmanuel Fernandez, Serge Galzi, Laurence Blondin, Sélim Ben Chehida, Jean-Michel Lett, François Mesleard, Simona Kraberger, Joy M Custer, Andrew Salywon, Elizabeth Makings, Armelle Marais, Frédéric Chiroleu, Pierre Lefeuvre, Darren P Martin, Thierry Candresse, Arvind Varsani, Virginie Ravigné, Philippe Roumagnac
{"title":"Virome release of an invasive exotic plant species in southern France","authors":"Oumaima Moubset, Denis Filloux, Hugo Fontes, Charlotte Julian, Emmanuel Fernandez, Serge Galzi, Laurence Blondin, Sélim Ben Chehida, Jean-Michel Lett, François Mesleard, Simona Kraberger, Joy M Custer, Andrew Salywon, Elizabeth Makings, Armelle Marais, Frédéric Chiroleu, Pierre Lefeuvre, Darren P Martin, Thierry Candresse, Arvind Varsani, Virginie Ravigné, Philippe Roumagnac","doi":"10.1093/ve/veae025","DOIUrl":"https://doi.org/10.1093/ve/veae025","url":null,"abstract":"The increase in human-mediated introduction of plant species to new regions has resulted in a rise of invasive exotic plant species (IEPS) that has had significant effects on biodiversity and ecosystem processes. One commonly accepted mechanism of invasions is that proposed by the enemy release hypothesis (ERH), which states that IEPS free from their native herbivores and natural enemies in new environments can outcompete indigenous species and become invasive. We here propose the virome release hypothesis (VRH) as a virus-centered variant of the conventional ERH that is only focused on enemies. The VRH predicts that vertically-transmitted plant-associated viruses (PAV, encompassing phytoviruses and mycoviruses) should be co-introduced during the dissemination of the IEPS, while horizontally-transmitted PAV of IEPS should be left behind or should not be locally transmitted in the introduced area due to a maladaptation of local vectors. To document the VRH, virome richness and composition as well as PAV prevalence, co-infection, host range and transmission modes were compared between indigenous plant species and an invasive grass, cane bluestem (Bothriochloa barbinodis), in both its introduced range (southern France) and one area of its native range (Sonoran Desert, Arizona, USA). Contrary to the VRH, we show that invasive populations of B. barbinodis in France were not associated with a lower PAV prevalence or richness than native populations of B. barbinodis from the USA. However, comparison of virome compositions and network analyses further revealed more diverse and complex plant-virus interactions in the French ecosystem, with a significant richness of mycoviruses. Setting mycoviruses apart, only one putatively vertically transmitted phytovirus (belonging to the Amalgaviridae family) and one putatively horizontally transmitted phytovirus (belonging to the Geminiviridae family) were identified from B. barbinodis plants in the introduced area. Collectively, these characteristics of the B. barbinodis associated PAV community in southern France suggest that a virome release phase may have immediately followed the introduction of B. barbinodis to France in the 1960s or 1970s, and that, since then, the invasive populations of this IEPS have already transitioned out of this virome release phase, and have started interacting with several local mycoviruses and a few local plant viruses.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"13 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus EvolutionPub Date : 2024-03-06eCollection Date: 2024-01-01DOI: 10.1093/ve/veae018
Miguel Álvarez-Herrera, Jordi Sevilla, Paula Ruiz-Rodriguez, Andrea Vergara, Jordi Vila, Pablo Cano-Jiménez, Fernando González-Candelas, Iñaki Comas, Mireia Coscollá
{"title":"VIPERA: Viral Intra-Patient Evolution Reporting and Analysis.","authors":"Miguel Álvarez-Herrera, Jordi Sevilla, Paula Ruiz-Rodriguez, Andrea Vergara, Jordi Vila, Pablo Cano-Jiménez, Fernando González-Candelas, Iñaki Comas, Mireia Coscollá","doi":"10.1093/ve/veae018","DOIUrl":"10.1093/ve/veae018","url":null,"abstract":"<p><p>Viral mutations within patients nurture the adaptive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during chronic infections, which are a potential source of variants of concern. However, there is no integrated framework for the evolutionary analysis of intra-patient SARS-CoV-2 serial samples. Herein, we describe Viral Intra-Patient Evolution Reporting and Analysis (VIPERA), a new software that integrates the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary trajectories of serial sequences from the same viral infection. We have validated it using positive and negative control datasets and have successfully applied it to a new case, which revealed population dynamics and evidence of adaptive evolution. VIPERA is available under a free software license at https://github.com/PathoGenOmics-Lab/VIPERA.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae018"},"PeriodicalIF":5.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus EvolutionPub Date : 2024-03-06eCollection Date: 2024-01-01DOI: 10.1093/ve/veae012
Maxime Courcelle, Habib Salami, Kadidia Tounkara, Modou Moustapha Lo, Aminata Ba, Mariame Diop, Mamadou Niang, Cheick Abou Kounta Sidibe, Amadou Sery, Marthin Dakouo, Lanceï Kaba, Youssouf Sidime, Mohamed Keyra, Alpha Oumar Sily Diallo, Ahmed Bezeid El Mamy, Ahmed Salem El Arbi, Yahya Barry, Ekaterina Isselmou, Habiboullah Habiboullah, Baba Doumbia, Mohamed Baba Gueya, Joseph Awuni, Theophilus Odoom, Patrick Tetteh Ababio, Daniel Nana Yaw TawiahYingar, Caroline Coste, Samia Guendouz, Olivier Kwiatek, Geneviève Libeau, Arnaud Bataille
{"title":"Comparative evolutionary analyses of peste des petits ruminants virus genetic lineages.","authors":"Maxime Courcelle, Habib Salami, Kadidia Tounkara, Modou Moustapha Lo, Aminata Ba, Mariame Diop, Mamadou Niang, Cheick Abou Kounta Sidibe, Amadou Sery, Marthin Dakouo, Lanceï Kaba, Youssouf Sidime, Mohamed Keyra, Alpha Oumar Sily Diallo, Ahmed Bezeid El Mamy, Ahmed Salem El Arbi, Yahya Barry, Ekaterina Isselmou, Habiboullah Habiboullah, Baba Doumbia, Mohamed Baba Gueya, Joseph Awuni, Theophilus Odoom, Patrick Tetteh Ababio, Daniel Nana Yaw TawiahYingar, Caroline Coste, Samia Guendouz, Olivier Kwiatek, Geneviève Libeau, Arnaud Bataille","doi":"10.1093/ve/veae012","DOIUrl":"10.1093/ve/veae012","url":null,"abstract":"<p><p>Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae012"},"PeriodicalIF":5.3,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingkai Ji, Cixiu Li, Tao Hu, Zhongshuai Tian, Juan Li, Lin Xu, Hong Zhou, Edward C Holmes, Weifeng Shi
{"title":"Diverse RNA Viruses in the Venom-Related Microenvironment of Different Animal Phyla","authors":"Jingkai Ji, Cixiu Li, Tao Hu, Zhongshuai Tian, Juan Li, Lin Xu, Hong Zhou, Edward C Holmes, Weifeng Shi","doi":"10.1093/ve/veae024","DOIUrl":"https://doi.org/10.1093/ve/veae024","url":null,"abstract":"Venom is known as the source of natural antimicrobial products. Previous studies have largely focused on the expression of venom-related genes and the biochemical components of venom. With the advent of metagenomic sequencing many more microorganisms, especially viruses, have been identified in highly diverse environments. Herein, we investigated the RNA virome in the venom-related microenvironment through analysis of a large volume of venom-related RNA-sequencing data mined from public databases. From this, we identified viral sequences belonging to 36 different viruses, of which 22 were classified as “novel” as they exhibited less than 90% amino acid identity to known viruses in the RNA-dependent RNA polymerase. Most of these novel viruses possessed genome structures similar to their closest relatives, with specific alterations in some cases. Phylogenetic analyses revealed that these viruses belonged to at least 22 viral families or unclassified groups, some of which were highly divergent from known taxa. Although further analysis failed to find venom-specific viruses, some viruses seemingly had much higher abundance in the venom-related microenvironment than in other tissues. In sum, our study provides insights into the RNA virome of venom-related microenvironment from diverse animal taxa.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"43 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolutionary trajectory of diverse SARS-CoV-2 variants at the beginning of COVID-19 outbreak.","authors":"Jia-Xin Lv, Xiang Liu, Yuan-Yuan Pei, Zhi-Gang Song, Xiao Chen, Shu-Jian Hu, Jia-Lei She, Yi Liu, Yan-Mei Chen, Yong-Zhen Zhang","doi":"10.1093/ve/veae020","DOIUrl":"https://doi.org/10.1093/ve/veae020","url":null,"abstract":"Despite extensive scientific efforts directed toward the evolutionary trajectory of SARS-CoV-2 in humans at the beginning of the COVID-19 epidemic, it remains unclear how the virus jumped into and evolved in humans so far. Herein, we recruited almost all adult COVID-19 cases appeared locally or imported from abroad during the first eight months of the outbreak in Shanghai. From these patients, SARS-CoV-2 genomes occupying the important phylogenetic positions in the virus phylogeny were recovered. Phylogenetic and mutational landscape analyses of viral genomes recovered here and those collected in and outside of China revealed that all known SARS-CoV-2 variants exhibited the evolutionary continuity despite the co-circulation of multiple lineages during the early period of the epidemic. Various mutations have driven the rapid SARS-CoV-2 diversification, and some of them favor its better adaptation and circulation in humans, which may have determined the waxing and waning of various lineages.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}