Australian & New Zealand Journal of Statistics最新文献

筛选
英文 中文
Global implicit function theorems and the online expectation–maximisation algorithm 全局隐函数定理和在线期望最大化算法
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2022-01-24 DOI: 10.1111/anzs.12356
Hien Duy Nguyen, Florence Forbes
{"title":"Global implicit function theorems and the online expectation–maximisation algorithm","authors":"Hien Duy Nguyen, Florence Forbes","doi":"10.1111/anzs.12356","DOIUrl":"10.1111/anzs.12356","url":null,"abstract":"The expectation–maximisation (EM) algorithm framework is an important tool for statistical computation. Due to the changing nature of data, online and mini‐batch variants of EM and EM‐like algorithms have become increasingly popular. The consistency of the estimator sequences that are produced by these EM variants often rely on an assumption regarding the continuous differentiability of a parameter update function. In many cases, the parameter update function is not in closed form and may only be defined implicitly, which makes the verification of the continuous differentiability property difficult. We demonstrate how a global implicit function theorem can be used to verify such properties in the cases of finite mixtures of distributions in the exponential family, and more generally, when the component‐specific distributions admit data augmentation schemes, within the exponential family. We then illustrate the use of such a theorem in the cases of mixtures of beta distributions, gamma distributions, fully visible Boltzmann machines and Student distributions. Via numerical simulations, we provide empirical evidence towards the consistency of the online EM algorithm parameter estimates in such cases.","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83582209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Sufficient dimension reduction for clustered data via finite mixture modelling 通过有限混合模型对聚类数据进行足够的降维
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2022-01-22 DOI: 10.1111/anzs.12349
F.K.C. Hui, L.H. Nghiem
{"title":"Sufficient dimension reduction for clustered data via finite mixture modelling","authors":"F.K.C. Hui,&nbsp;L.H. Nghiem","doi":"10.1111/anzs.12349","DOIUrl":"10.1111/anzs.12349","url":null,"abstract":"<div>\u0000 \u0000 <p>Sufficient dimension reduction (SDR) is an attractive approach to regression modelling. However, despite its rich literature and growing popularity in application, surprisingly little research has been done on how to perform SDR for clustered data, for example as is commonly arises in longitudinal studies. Indeed, current popular SDR methods have been mostly based on a marginal estimating equation approach. In this article, we propose a new approach to SDR for clustered data based on a combination of finite mixture modelling and mixed effects regression. Finite mixture models offer a flexible means of estimating the fixed effects central subspace, based on slicing the space up and probabilistically clustering observations to each slice (mixture component). Dimension reduction is achieved by having the mixing proportions vary only through the sufficient fixed effect predictors. We then incorporate random effects as a natural means of accounting for correlations within clusters. We employ a Monte Carlo expectation–maximisation algorithm to estimate the model parameters and fixed effects central subspace, and discuss methods for associated uncertainty quantification and prediction. Simulation studies demonstrate that our approach performs strongly against both estimating equation methods for estimating the fixed effects central subspace, and SDR methods which do not account for within-cluster correlation. Finally, we apply the proposed approach to a data set on air pollutant monitoring across 13 stations in the Eastern United States.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73971724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bayesian credible intervals for population attributable risk from case–control, cohort and cross-sectional studies 来自病例对照、队列和横断面研究的人群归因风险的贝叶斯可信区间
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2022-01-17 DOI: 10.1111/anzs.12352
Sarah Pirikahu, Geoffrey Jones, Martin L. Hazelton
{"title":"Bayesian credible intervals for population attributable risk from case–control, cohort and cross-sectional studies","authors":"Sarah Pirikahu,&nbsp;Geoffrey Jones,&nbsp;Martin L. Hazelton","doi":"10.1111/anzs.12352","DOIUrl":"10.1111/anzs.12352","url":null,"abstract":"<div>\u0000 \u0000 <p>Population attributable risk (PAR) and population attributable fraction (PAF) are used in epidemiology to predict the impact of removing a risk factor from the population. Until recently, no standard approach for calculating confidence intervals or the variance for PAR in particular was available in the literature. Previously we outlined a fully Bayesian approach to provide credible intervals for the PAR and PAF from a cross-sectional study, where the data was presented in the form of a 2×2 table. However, extensions to cater for other frequently used study designs were not provided. In this paper we provide methodology to calculate credible intervals for the PAR and PAF for case–control and cohort studies. Additionally, we extend the cross-sectional example to allow for the incorporation of uncertainty that arises when an imperfect diagnostic test is used. In all these situations the model becomes over-parameterised, or non-identifiable, which can result in standard ‘off-the-shelf’ Markov Chain Monte Carlo (MCMC) updaters taking a long time to converge or even failing altogether. We adapt an importance sampling methodology to overcome this problem, and propose some novel MCMC samplers that take into consideration the shape of the posterior ridge to aid in the convergence of the Markov chain.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79829223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring the values of cricket players 衡量板球运动员的价值
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2022-01-15 DOI: 10.1111/anzs.12353
Pranjal Chandrakar, Shubhabrata Das
{"title":"Measuring the values of cricket players","authors":"Pranjal Chandrakar,&nbsp;Shubhabrata Das","doi":"10.1111/anzs.12353","DOIUrl":"10.1111/anzs.12353","url":null,"abstract":"<div>\u0000 \u0000 <p>Sports franchises that participate in team sports can make better decisions regarding their players’ financial compensation, renewal of the contracts, bidding strategies during the auction, etc., if they can adequately assess the value or worth of their players. Evaluating the value of a player in a team sport is difficult because various team members play different roles. In this study, we resolve this by measuring the value of a player in terms of how his inclusion in the team affects the team's probability of winning. With this notion of value, we develop a technique to measure the worth of a cricket player for his franchise. To illustrate this technique, we evaluate the values of cricket players who play in the Indian Premier League. We also study the relationship between players’ values and their salaries. We find that a few popular players earn disproportionately more than others. This disproportionality in the income of popular players cannot be justified by their performance alone, as adjudged by their values in this work. We attribute the disproportionality in the income to the factors not captured via conventional yardsticks, including leadership or brand value.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74128017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection boundary for a sparse gamma scale mixture model 稀疏伽玛尺度混合模型的检测边界
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2022-01-11 DOI: 10.1111/anzs.12347
Michael I. Stewart
{"title":"Detection boundary for a sparse gamma scale mixture model","authors":"Michael I. Stewart","doi":"10.1111/anzs.12347","DOIUrl":"10.1111/anzs.12347","url":null,"abstract":"<div>\u0000 \u0000 <p>We derive the detection boundary for the one-sided version of the gamma scale mixture model where the contaminating component has a larger mean than the known reference distribution. We also derive an adaptive test which is able to almost uniformly attain the best possible performance in terms of detection of local alternatives.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77949170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Odds-symmetry model for cumulative probabilities and decomposition of a conditional symmetry model in square contingency tables 平方列联表中累积概率的奇数-对称模型及条件对称模型的分解
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2021-12-06 DOI: 10.1111/anzs.12346
Shuji Ando
{"title":"Odds-symmetry model for cumulative probabilities and decomposition of a conditional symmetry model in square contingency tables","authors":"Shuji Ando","doi":"10.1111/anzs.12346","DOIUrl":"10.1111/anzs.12346","url":null,"abstract":"<div>\u0000 \u0000 <p>For the analysis of square contingency tables, it is necessary to estimate an unknown distribution with high confidence from an obtained observation. For that purpose, we need to introduce a statistical model that fits the data well and has parsimony. This study proposes asymmetry models based on cumulative probabilities for square contingency tables with the same row and column ordinal classifications. In the proposed models, the odds, for all <i>i</i>&lt;<i>j</i>, that an observation will fall in row category <i>i</i> or below, and column category <i>j</i> or above, instead of row category <i>j</i> or above, and column category <i>i</i> or below, depend on only row category <i>i</i> or column category <i>j</i>. This is notwithstanding that the odds are constant without relying on row and column categories under the conditional symmetry (CS) model. The proposed models constantly hold when the CS model holds. However, the converse is not necessarily true. This study also shows that it is necessary to satisfy the extended marginal homogeneity model, in addition to the proposed models, to satisfy the CS model. These decomposition theorems explain why the CS model does not hold. The proposed models provide a better fit for application to a single data set of real-world occupational data for father-and-son dyads.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77244237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Proportional inverse Gaussian distribution: A new tool for analysing continuous proportional data 比例反高斯分布:分析连续比例数据的新工具
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2021-11-23 DOI: 10.1111/anzs.12345
Pengyi Liu, Guo-Liang Tian, Kam Chuen Yuen, Chi Zhang, Man-Lai Tang
{"title":"Proportional inverse Gaussian distribution: A new tool for analysing continuous proportional data","authors":"Pengyi Liu,&nbsp;Guo-Liang Tian,&nbsp;Kam Chuen Yuen,&nbsp;Chi Zhang,&nbsp;Man-Lai Tang","doi":"10.1111/anzs.12345","DOIUrl":"10.1111/anzs.12345","url":null,"abstract":"<div>\u0000 \u0000 <p>Outcomes in the form of rates, fractions, proportions and percentages often appear in various fields. Existing beta and simplex distributions are frequently unable to exhibit satisfactory performances in fitting such continuous data. This paper aims to develop the normalised inverse Gaussian (N-IG) distribution proposed by Lijoi, Mena &amp; Prünster (2005, Journal of the American Statistical Association, <b>100</b>, 1278–1291) as a new tool for analysing continuous proportional data in (0,1) and renames the N-IG as proportional inverse Gaussian (PIG) distribution. Our main contributions include: (i) To overcome the difficulty of an integral in the PIG density function, we propose a novel minorisation–maximisation (MM) algorithm via the continuous version of Jensen's inequality to calculate the maximum likelihood estimates of the parameters in the PIG distribution; (ii) We also develop an MM algorithm aided by the gradient descent algorithm for the PIG regression model, which allows us to explore the relationship between a set of covariates with the mean parameter; (iii) Both the comparative studies and the real data analyses show that the PIG distribution is better when comparing with the beta and simplex distributions in terms of the AIC, the Cramér–von Mises and the Kolmogorov–Smirnov tests. In addition, bootstrap confidence intervals and testing hypothesis on the symmetry of the PIG density are also presented. Simulation studies are conducted and the hospital stay data of Barcelona in 1988 and 1990 are analysed to illustrate the proposed methods.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87974708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
BNPdensity: Bayesian nonparametric mixture modelling in R bnp密度:贝叶斯非参数混合建模
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2021-11-17 DOI: 10.1111/anzs.12342
J. Arbel, G. Kon Kam King, A. Lijoi, L. Nieto-Barajas, I. Prünster
{"title":"BNPdensity: Bayesian nonparametric mixture modelling in R","authors":"J. Arbel,&nbsp;G. Kon Kam King,&nbsp;A. Lijoi,&nbsp;L. Nieto-Barajas,&nbsp;I. Prünster","doi":"10.1111/anzs.12342","DOIUrl":"10.1111/anzs.12342","url":null,"abstract":"<div>\u0000 \u0000 <p>Robust statistical data modelling under potential model mis-specification often requires leaving the parametric world for the nonparametric. In the latter, parameters are infinite dimensional objects such as functions, probability distributions or infinite vectors. In the Bayesian nonparametric approach, prior distributions are designed for these parameters, which provide a handle to manage the complexity of nonparametric models in practice. However, most modern Bayesian nonparametric models seem often out of reach to practitioners, as inference algorithms need careful design to deal with the infinite number of parameters. The aim of this work is to facilitate the journey by providing computational tools for Bayesian nonparametric inference. The article describes a set of functions available in the <span>R</span> package <span>BNPdensity</span> in order to carry out density estimation with an infinite mixture model, including all types of censored data. The package provides access to a large class of such models based on normalised random measures, which represent a generalisation of the popular Dirichlet process mixture. One striking advantage of this generalisation is that it offers much more robust priors on the number of clusters than the Dirichlet. Another crucial advantage is the complete flexibility in specifying the prior for the scale and location parameters of the clusters, because conjugacy is not required. Inference is performed using a theoretically grounded approximate sampling methodology known as the Ferguson &amp; Klass algorithm. The package also offers several goodness-of-fit diagnostics such as QQ plots, including a cross-validation criterion, the conditional predictive ordinate. The proposed methodology is illustrated on a classical ecological risk assessment method called the species sensitivity distribution problem, showcasing the benefits of the Bayesian nonparametric framework.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90676545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Experimental design in practice: The importance of blocking and treatment structures 实践中的实验设计:阻塞和处理结构的重要性
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2021-11-08 DOI: 10.1111/anzs.12343
E.R. Williams, C.G. Forde, J. Imaki, K. Oelkers
{"title":"Experimental design in practice: The importance of blocking and treatment structures","authors":"E.R. Williams,&nbsp;C.G. Forde,&nbsp;J. Imaki,&nbsp;K. Oelkers","doi":"10.1111/anzs.12343","DOIUrl":"10.1111/anzs.12343","url":null,"abstract":"<div>\u0000 \u0000 <p>Experimental design and analysis has evolved substantially over the last 100 years, driven to a large extent by the power and availability of the computer. To demonstrate this development and encourage the use of experimental design in practice, three experiments from different research areas are presented. In these examples multiple blocking factors have been employed and they show how extraneous variation can be accommodated and interpreted. The examples are used to discuss the importance of blocking and treatment structures in the conduct of designed experiments.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79888954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Accelerating adaptation in the adaptive Metropolis–Hastings random walk algorithm 自适应Metropolis-Hastings随机漫步算法中的加速自适应
IF 1.1 4区 数学
Australian & New Zealand Journal of Statistics Pub Date : 2021-11-03 DOI: 10.1111/anzs.12344
Simon E.F. Spencer
{"title":"Accelerating adaptation in the adaptive Metropolis–Hastings random walk algorithm","authors":"Simon E.F. Spencer","doi":"10.1111/anzs.12344","DOIUrl":"10.1111/anzs.12344","url":null,"abstract":"<p>The Metropolis–Hastings random walk algorithm remains popular with practitioners due to the wide variety of situations in which it can be successfully applied and the extreme ease with which it can be implemented. Adaptive versions of the algorithm use information from the early iterations of the Markov chain to improve the efficiency of the proposal. The aim of this paper is to reduce the number of iterations needed to adapt the proposal to the target, which is particularly important when the likelihood is time-consuming to evaluate. First, the accelerated shaping algorithm is a generalisation of both the adaptive proposal and adaptive Metropolis algorithms. It is designed to remove, from the estimate of the covariance matrix of the target, misleading information from the start of the chain. Second, the accelerated scaling algorithm rapidly changes the scale of the proposal to achieve a target acceptance rate. The usefulness of these approaches is illustrated with a range of examples.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12344","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76002648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信