大规模多重比较问题中密度和零比估计的非参数混合方法

Pub Date : 2023-04-04 DOI:10.1111/anzs.12383
Xiangjie Xue, Yong Wang
{"title":"大规模多重比较问题中密度和零比估计的非参数混合方法","authors":"Xiangjie Xue,&nbsp;Yong Wang","doi":"10.1111/anzs.12383","DOIUrl":null,"url":null,"abstract":"<p>A new method for estimating the proportion of null effects is proposed for solving large-scale multiple comparison problems. It utilises maximum likelihood estimation of nonparametric mixtures, which also provides a density estimate of the test statistics. It overcomes the problem of the usual nonparametric maximum likelihood estimator that cannot produce a positive probability at the location of null effects in the process of estimating nonparametrically a mixing distribution. The profile likelihood is further used to help produce a range of null proportion values, corresponding to which the density estimates are all consistent. With a proper choice of a threshold function on the profile likelihood ratio, the upper endpoint of this range can be shown to be a consistent estimator of the null proportion. Numerical studies show that the proposed method has an apparently convergent trend in all cases studied and performs favourably when compared with existing methods in the literature.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12383","citationCount":"0","resultStr":"{\"title\":\"A nonparametric mixture approach to density and null proportion estimation in large-scale multiple comparison problems\",\"authors\":\"Xiangjie Xue,&nbsp;Yong Wang\",\"doi\":\"10.1111/anzs.12383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new method for estimating the proportion of null effects is proposed for solving large-scale multiple comparison problems. It utilises maximum likelihood estimation of nonparametric mixtures, which also provides a density estimate of the test statistics. It overcomes the problem of the usual nonparametric maximum likelihood estimator that cannot produce a positive probability at the location of null effects in the process of estimating nonparametrically a mixing distribution. The profile likelihood is further used to help produce a range of null proportion values, corresponding to which the density estimates are all consistent. With a proper choice of a threshold function on the profile likelihood ratio, the upper endpoint of this range can be shown to be a consistent estimator of the null proportion. Numerical studies show that the proposed method has an apparently convergent trend in all cases studied and performs favourably when compared with existing methods in the literature.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12383\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对大规模多重比较问题,提出了一种估计零效应比例的新方法。它利用了非参数混合物的最大似然估计,这也提供了测试统计的密度估计。它克服了通常的非参数最大似然估计在非帧估计混合分布的过程中不能在零效应位置产生正概率的问题。轮廓似然性被进一步用于帮助产生零比例值的范围,对应于该范围的密度估计都是一致的。在轮廓似然比上适当选择阈值函数的情况下,该范围的上限可以被证明是零比例的一致估计器。数值研究表明,所提出的方法在所研究的所有情况下都有明显的收敛趋势,与文献中现有的方法相比表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A nonparametric mixture approach to density and null proportion estimation in large-scale multiple comparison problems

分享
查看原文
A nonparametric mixture approach to density and null proportion estimation in large-scale multiple comparison problems

A new method for estimating the proportion of null effects is proposed for solving large-scale multiple comparison problems. It utilises maximum likelihood estimation of nonparametric mixtures, which also provides a density estimate of the test statistics. It overcomes the problem of the usual nonparametric maximum likelihood estimator that cannot produce a positive probability at the location of null effects in the process of estimating nonparametrically a mixing distribution. The profile likelihood is further used to help produce a range of null proportion values, corresponding to which the density estimates are all consistent. With a proper choice of a threshold function on the profile likelihood ratio, the upper endpoint of this range can be shown to be a consistent estimator of the null proportion. Numerical studies show that the proposed method has an apparently convergent trend in all cases studied and performs favourably when compared with existing methods in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信