Xiufang Liu, Dehui Wang, Huaping Chen, Lifang Zhao, Liang Liu
{"title":"A class of kth-order dependence-driven random coefficient mixed thinning integer-valued autoregressive process to analyse epileptic seizure data and COVID-19 data","authors":"Xiufang Liu, Dehui Wang, Huaping Chen, Lifang Zhao, Liang Liu","doi":"10.1111/anzs.12411","DOIUrl":"10.1111/anzs.12411","url":null,"abstract":"<div>\u0000 \u0000 <p>Data related to the counting of elements of variable character are frequently encountered in time series studies. This paper brings forward a new class of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$$ k $$</annotation>\u0000 </semantics></math>th-order dependence-driven random coefficient mixed thinning integer-valued autoregressive time series model (DDRCMTINAR(<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$$ k $$</annotation>\u0000 </semantics></math>)) to deal with such data. Stationarity and ergodicity properties of the proposed model are derived in detail. The unknown parameters are estimated by conditional least squares, and modified quasi-likelihood and asymptotic normality of the obtained parameter estimators is established. The performances of the adopted estimate methods are checked via simulations, which present that modified quasi-likelihood estimators perform better than the conditional least squares considering the proportion of within-<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 </mrow>\u0000 <annotation>$$ Omega $$</annotation>\u0000 </semantics></math> estimates in certain regions of the parameter space. The validity and practical utility of the model are investigated by epileptic seizure data and COVID-19 data of suspected cases in China.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bayesian hypothesis tests with diffuse priors: Can we have our cake and eat it too?","authors":"J. T. Ormerod, M. Stewart, W. Yu, S. E. Romanes","doi":"10.1111/anzs.12410","DOIUrl":"10.1111/anzs.12410","url":null,"abstract":"<p>We propose a new class of priors for Bayesian hypothesis testing, which we name ‘cake priors’. These priors circumvent the Jeffreys–Lindley paradox (also called Bartlett's paradox) a problem associated with the use of diffuse priors leading to nonsensical statistical inferences. Cake priors allow the use of diffuse priors (having one's cake) while achieving theoretically justified inferences (eating it too). We demonstrate this methodology for Bayesian hypotheses tests for various common scenarios. The resulting Bayesian test statistic takes the form of a penalised likelihood ratio test statistic. Under typical regularity conditions, we show that Bayesian hypothesis tests based on cake priors are Chernoff consistent, that is, achieve zero type I and II error probabilities asymptotically. We also discuss Lindley's paradox and argue that the paradox occurs with small and vanishing probability as sample size increases.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12410","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics for the conditional self-weighted \u0000 \u0000 \u0000 M\u0000 \u0000 $$ M $$\u0000 estimator of GRCA(\u0000 \u0000 \u0000 p\u0000 \u0000 $$ p $$\u0000 ) models and its statistical inference","authors":"Chi Yao, Wei Yu, Xuejun Wang","doi":"10.1111/anzs.12408","DOIUrl":"10.1111/anzs.12408","url":null,"abstract":"<div>\u0000 \u0000 <p>Under the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 <annotation>$$ p $$</annotation>\u0000 </semantics></math>-order generalised random coefficient autoregressive (GRCA(<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 <annotation>$$ p $$</annotation>\u0000 </semantics></math>)) model with random coefficients <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>Φ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>,</mo>\u0000 </mrow>\u0000 <annotation>$$ {boldsymbol{Phi}}_t, $$</annotation>\u0000 </semantics></math> we propose a conditional self-weighted <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$$ M $$</annotation>\u0000 </semantics></math> estimator of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <msub>\u0000 <mrow>\u0000 <mi>Φ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ mathrm{E}{boldsymbol{Phi}}_t $$</annotation>\u0000 </semantics></math>. We investigate the asymptotic normality of this estimator with possibly heavy-tailed random variables. Furthermore, a Wald test statistic is constructed for the linear restriction on the parameters. In addition, the simulation experiments are carried out to assess the finite sample performance of theoretical results. Finally, a real data analysis about the increase (%) in the number of construction projects this year over the same period of last year is provided.</p>\u0000 </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}