{"title":"Fast estimation of generalized linear latent variable models for performance and process data with ordinal, continuous, and count observed variables","authors":"Maoxin Zhang, Björn Andersson, Shaobo Jin","doi":"10.1111/bmsp.12337","DOIUrl":"10.1111/bmsp.12337","url":null,"abstract":"<p>Different data types often occur in psychological and educational measurement such as computer-based assessments that record performance and process data (e.g., response times and the number of actions). Modelling such data requires specific models for each data type and accommodating complex dependencies between multiple variables. Generalized linear latent variable models are suitable for modelling mixed data simultaneously, but estimation can be computationally demanding. A fast solution is to use Laplace approximations, but existing implementations of joint modelling of mixed data types are limited to ordinal and continuous data. To address this limitation, we derive an efficient estimation method that uses first- or second-order Laplace approximations to simultaneously model ordinal data, continuous data, and count data. We illustrate the approach with an example and conduct simulations to evaluate the performance of the method in terms of estimation efficiency, convergence, and parameter recovery. The results suggest that the second-order Laplace approximation achieves a higher convergence rate and produces accurate yet fast parameter estimates compared to the first-order Laplace approximation, while the time cost increases with higher model complexity. Additionally, models that consider the dependence of variables from the same stimulus fit the empirical data substantially better than models that disregarded the dependence.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 3","pages":"477-507"},"PeriodicalIF":1.5,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12337","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pasquale Anselmi, Jürgen Heller, Luca Stefanutti, Egidio Robusto
{"title":"Constructing tests for skill assessment with competence-based test development","authors":"Pasquale Anselmi, Jürgen Heller, Luca Stefanutti, Egidio Robusto","doi":"10.1111/bmsp.12335","DOIUrl":"10.1111/bmsp.12335","url":null,"abstract":"<p>Competence-based test development is a recent and innovative method for the construction of tests that are as informative as possible about the competence state (the set of skills an individual has available) underlying the observed item responses. It finds application in different contexts, including the development of tests from scratch, and the improvement or shortening of existing tests. Given a fixed collection of competence states existing in a population of individuals and a fixed collection of competencies (each of which being the subset of skills that allow for solving an item), the competency deletion procedure results in tests that differ from each other in the competencies but are all equally informative about individuals' competence states. This work introduces a streamlined version of the competency deletion procedure that considers information necessary for test construction only, illustrates a straightforward way to incorporate test developer preferences about competencies into the test construction process, and evaluates the performance of the resulting tests in uncovering the competence states from the observed item responses.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 3","pages":"429-458"},"PeriodicalIF":1.5,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identifiability and estimability of Bayesian linear and nonlinear crossed random effects models","authors":"Corissa T. Rohloff, Nidhi Kohli, Eric F. Lock","doi":"10.1111/bmsp.12334","DOIUrl":"10.1111/bmsp.12334","url":null,"abstract":"<p>Crossed random effects models (CREMs) are particularly useful in longitudinal data applications because they allow researchers to account for the impact of dynamic group membership on individual outcomes. However, no research has determined what data conditions need to be met to sufficiently identify these models, especially the group effects, in a longitudinal context. This is a significant gap in the current literature as future applications to real data may need to consider these conditions to yield accurate and precise model parameter estimates, specifically for the group effects on individual outcomes. Furthermore, there are no existing CREMs that can model intrinsically nonlinear growth. The goals of this study are to develop a Bayesian piecewise CREM to model intrinsically nonlinear growth and evaluate what data conditions are necessary to empirically identify both intrinsically linear and nonlinear longitudinal CREMs. This study includes an applied example that utilizes the piecewise CREM with real data and three simulation studies to assess the data conditions necessary to estimate linear, quadratic, and piecewise CREMs. Results show that the number of repeated measurements collected on groups impacts the ability to recover the group effects. Additionally, functional form complexity impacted data collection requirements for estimating longitudinal CREMs.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 2","pages":"375-394"},"PeriodicalIF":2.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12334","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical inference for agreement between multiple raters on a binary scale","authors":"Sophie Vanbelle","doi":"10.1111/bmsp.12333","DOIUrl":"10.1111/bmsp.12333","url":null,"abstract":"<p>Agreement studies often involve more than two raters or repeated measurements. In the presence of two raters, the proportion of agreement and of positive agreement are simple and popular agreement measures for binary scales. These measures were generalized to agreement studies involving more than two raters with statistical inference procedures proposed on an empirical basis. We present two alternatives. The first is a Wald confidence interval using standard errors obtained by the delta method. The second involves Bayesian statistical inference not requiring any specific Bayesian software. These new procedures show better statistical behaviour than the confidence intervals initially proposed. In addition, we provide analytical formulas to determine the minimum number of persons needed for a given number of raters when planning an agreement study. All methods are implemented in the R package <i>simpleagree</i> and the Shiny app <i>simpleagree</i>.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 2","pages":"245-260"},"PeriodicalIF":2.6,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12333","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139486878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodrigo Macías, J. Fernando Vera, Willem J. Heiser
{"title":"A cluster differences unfolding method for large datasets of preference ratings on an interval scale: Minimizing the mean squared centred residuals","authors":"Rodrigo Macías, J. Fernando Vera, Willem J. Heiser","doi":"10.1111/bmsp.12332","DOIUrl":"10.1111/bmsp.12332","url":null,"abstract":"<p>Clustering and spatial representation methods are often used in combination, to analyse preference ratings when a large number of individuals and/or object is involved. When analysed under an unfolding model, row-conditional linear transformations are usually most appropriate when the goal is to determine clusters of individuals with similar preferences. However, a significant problem with transformations that include both slope and intercept is the occurrence of degenerate solutions. In this paper, we propose a least squares unfolding method that performs clustering of individuals while simultaneously estimating the location of cluster centres and object locations in low-dimensional space. The method is based on minimising the mean squared centred residuals of the preference ratings with respect to the distances between cluster centres and object locations. At the same time, the distances are row-conditionally transformed with optimally estimated slope parameters. It is computationally efficient for large datasets, and does not suffer from the appearance of degenerate solutions. The performance of the method is analysed in an extensive Monte Carlo experiment. It is illustrated for a real data set and the results are compared with those obtained using a two-step clustering and unfolding procedure.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 2","pages":"356-374"},"PeriodicalIF":2.6,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139426139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correcting for measurement error under meta-analysis of z-transformed correlations","authors":"Qian Zhang, Qi Wang","doi":"10.1111/bmsp.12328","DOIUrl":"10.1111/bmsp.12328","url":null,"abstract":"<p>This study mainly concerns correction for measurement error using the meta-analysis of Fisher's z-transformed correlations. The disattenuation formula of Spearman (American Journal of Psychology, <b>15</b>, 1904, 72) is used to correct for individual raw correlations in primary studies. The corrected raw correlations are then used to obtain the corrected z-transformed correlations. What remains little studied, however, is how to best correct for within-study sampling error variances of corrected z-transformed correlations. We focused on three within-study sampling error variance estimators corrected for measurement error that were proposed in earlier studies and is proposed in the current study: (1) the formula given by Hedges (<i>Test validity</i>, Lawrence Erlbaum, 1988) assuming a linear relationship between corrected and uncorrected z-transformed correlations (linear correction), (2) one derived by the first-order delta method based on the average of corrected z-transformed correlations (stabilized first-order correction), and (3) one derived by the second-order delta method based on the average of corrected z-transformed correlations (stabilized second-order correction). Via a simulation study, we compared performance of these estimators and the sampling error variance estimator uncorrected for measurement error in terms of estimation and inference accuracy of the mean correlation as well as the homogeneity test of effect sizes. In obtaining the corrected z-transformed correlations and within-study sampling error variances, coefficient alpha was used as a common reliability coefficient estimate. The results showed that in terms of the estimated mean correlation, sampling error variances with linear correction, the stabilized first-order and second-order corrections, and no correction performed similarly in general. Furthermore, in terms of the homogeneity test, given a relatively large average sample size and normal true scores, the stabilized first-order and second-order corrections had type I error rates that were generally controlled as well as or better than the other estimators. Overall, stabilized first-order and second-order corrections are recommended when true scores are normal, reliabilities are acceptable, the number of items per psychological scale is relatively large, and the average sample size is relatively large.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 2","pages":"261-288"},"PeriodicalIF":2.6,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wan-Lun Wang, Luis M. Castro, Huei-Jyun Li, Tsung-I Lin
{"title":"Mixtures of \u0000 \u0000 \u0000 t\u0000 \u0000 $$ t $$\u0000 factor analysers with censored responses and external covariates: An application to educational data from Peru","authors":"Wan-Lun Wang, Luis M. Castro, Huei-Jyun Li, Tsung-I Lin","doi":"10.1111/bmsp.12329","DOIUrl":"10.1111/bmsp.12329","url":null,"abstract":"<p>Analysing data from educational tests allows governments to make decisions for improving the quality of life of individuals in a society. One of the key responsibilities of statisticians is to develop models that provide decision-makers with pertinent information about the latent process that educational tests seek to represent. Mixtures of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation>$$ t $$</annotation>\u0000 </semantics></math> factor analysers (MtFA) have emerged as a powerful device for model-based clustering and classification of high-dimensional data containing one or several groups of observations with fatter tails or anomalous outliers. This paper considers an extension of MtFA for robust clustering of censored data, referred to as the MtFAC model, by incorporating external covariates. The enhanced flexibility of including covariates in MtFAC enables cluster-specific multivariate regression analysis of dependent variables with censored responses arising from upper and/or lower detection limits of experimental equipment. An alternating expectation conditional maximization (AECM) algorithm is developed for maximum likelihood estimation of the proposed model. Two simulation experiments are conducted to examine the effectiveness of the techniques presented. Furthermore, the proposed methodology is applied to Peruvian data from the 2007 Early Grade Reading Assessment, and the results obtained from the analysis provide new insights regarding the reading skills of Peruvian students.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 2","pages":"316-336"},"PeriodicalIF":2.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138630782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}