{"title":"Graham Priest. An introduction to non-classical logic: From If to Is . Second Edition. Cambridge University Press, Cambridge, United Kingdom, 2008, xxxii + 613 pp.","authors":"P. Hájek","doi":"10.1017/S1079898600001505","DOIUrl":"https://doi.org/10.1017/S1079898600001505","url":null,"abstract":"","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"544 - 545"},"PeriodicalIF":0.6,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1079898600001505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57303111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2008 Spring Meeting of the Association for Symbolic Logic","authors":"G. Sher","doi":"10.2178/bsl/1231081375","DOIUrl":"https://doi.org/10.2178/bsl/1231081375","url":null,"abstract":"s of the invited talks and contributed talks given (in person or by title) by members of the Association for Symbolic Logic follow. For the Program Committee Gila Sher Abstracts of invited papers for the Symposium on Quantifiers in Logic and Languages of invited papers for the Symposium on Quantifiers in Logic and Language CHRIS BARKER, Reasoning about scope-taking in a substructural logic. NYU Linguistics, 726 Broadway, 7th floor, New York, NY 10003, USA. E-mail: Chris. Barker@nyu. edu. ? 2008, Association for Symbolic Logic 1079-8986/08/1403-0007/$1.60","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"412 - 417"},"PeriodicalIF":0.6,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2178/bsl/1231081375","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68346943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2008 Annual Meeting of the Association for Symbolic Logic","authors":"C. Laskowski","doi":"10.2178/bsl/1231081376","DOIUrl":"https://doi.org/10.2178/bsl/1231081376","url":null,"abstract":"of 19 Annual Gödel Lecture W. HUGH WOODIN, The Continuum Hypothesis, the Ω Conjecture, and the inner model problem for one supercompact cardinal. Department of Mathematics, The University of California, 721 Evans Hall #3840, Berkeley, CA 94720-3840 US. E-mail: woodin@math.berkeley.edu. The Ω Conjecture is a key element of an argument that the Continuum Hypothesis is false, based on notions of simplicity. While this application is certainly debatable, there is a much stronger argument that if the Ω Conjecture is true then the Continuum Hypothesis must have an answer. In brief, the Ω Conjecture rules out amultiverse conception of truth in Set Theory which is based on the generic multiverse. The ΩConjecture is invariant under passing from the universe of sets to a generic extension of the universe of sets, and so it is reasonable to expect that if the Ω Conjecture is false then it must be refuted by some large cardinal hypothesis. The search for candidates for such a large cardinal hypothesis leads to the inner model problem since subject to fairly general criteria, if the inner model problem can be solved for a particular large cardinal hypothesis then that large cardinal hypothesis cannot refute the Ω Conjecture. Again subject to fairly general criteria for a successful inner model construction, the entire inner model program can now be reduced to the case of exactly one supercompact cardinal. If this one case can be solved then one obtains an ultimate generalization of Gödel’s, Axiom of Constructibility, and one also obtains that no (known) large cardinal hypothesis can refute the Ω Conjecture. I shall survey how the inner model problem for one supercompact cardinal has emerged as the critical case, the connections with the Ω Conjecture, and the connections to transfinite generalizations of the Axiom of Determinacy. My emphasis will be less on the technical details and more on what I think are the key foundational issues. Abstract of Special Lecture in honor of Paul Eklofof Special Lecture in honor of Paul Eklof SAHARON SHELAH, Incompactness in singular cardinals. Department of Mathematics, Hebrew University, Jerusalem, Israel 91905. E-mail: shelah@math.huji.ac.il. We prove the consistency of: is strong limit singular and for some properties of Abelian 42","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"418 - 437"},"PeriodicalIF":0.6,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68347033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Natural Axiomatization of Computability and Proof of Church's Thesis","authors":"N. Dershowitz, Y. Gurevich","doi":"10.2178/bsl/1231081370","DOIUrl":"https://doi.org/10.2178/bsl/1231081370","url":null,"abstract":"Abstract Church's Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turing-computable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church's Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing's Thesis, characterizing the effective string functions, and—in particular—the effectively-computable functions on string representations of numbers.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"299 - 350"},"PeriodicalIF":0.6,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2178/bsl/1231081370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68346632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconsidering Ordered Pairs","authors":"D. Scott, D. McCarty","doi":"10.2178/bsl/1231081372","DOIUrl":"https://doi.org/10.2178/bsl/1231081372","url":null,"abstract":"Abstract The well known Wiener-Kuratowski explicit definition of the ordered pair, which sets (x,y) = {{x}, {x,y}}, works well in many set theories but fails for those with classes which cannot be members of singletons. With the aid of the Axiom of Foundation, we propose a recursive definition of ordered pair which addresses this shortcoming and also naturally generalizes to ordered tuples of greater length. There are many advantages to the new definition, for it allows for uniform definitions working equally well in a wide range of models for set theories. In ZFC and closely related theories, the rank of an ordered pair of two infinite sets under the new definition turns out to be equal to the maximum of the ranks of the sets.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"379 - 397"},"PeriodicalIF":0.6,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2178/bsl/1231081372","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68346288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cohen and Set Theory","authors":"A. Kanamori","doi":"10.2178/bsl/1231081371","DOIUrl":"https://doi.org/10.2178/bsl/1231081371","url":null,"abstract":"Abstract We discuss the work of Paul Cohen in set theory and its influence, especially the background, discovery, development of forcing.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"351 - 378"},"PeriodicalIF":0.6,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2178/bsl/1231081371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68346206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}